首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 10 毫秒
1.
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1–5 ms and the peak-to-peak amplitude is in the order of 0.1–5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field 〈By〉. The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.  相似文献   

2.
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.  相似文献   

3.
We investigated the effect of the presence of a nonthermal electron population on the electrostatic nonlinear waves. We considered positively charged ions with two electron populations. Using the fluid equations for the unmagnetized case and the Sagdeev pseudo-potential approach the nonlinear ion-acoustic waves are studied. The cold electrons are in thermal equilibrium while the hot electron population follows a nonthermal distribution. Numerical investigation shows the importance of the presence of small amount of cold electrons that make it possible for the plasma to support nonlinear waves. We obtained the minimum cold electron density necessary to sustain these nonlinear waves. The relevant situation corresponds to the upper ionosphere where energetic electrons have been observed.  相似文献   

4.
Nonlinear isolated electrostatic solitary waves (ESWs) are observed routinely at many of Earth’s major boundaries by the Wideband Data (WBD) plasma wave receivers that are mounted on the four Cluster satellites. The current study discusses two aspects of ESWs: their characteristics in the magnetosheath, and their propagation in the magnetosheath and in the auroral acceleration (upward current) region. The characteristics (amplitude and time duration) of ESWs detected in the magnetosheath are presented for one case in which special mutual impedance tests were conducted allowing for the determination of the density and temperature of the hot and cold electrons. These electron parameters, together with those from the ion experiment, were used as inputs to an electron acoustic soliton model as a consideration for the generation of the observed ESWs. The results from this model showed that negative potential ESWs of a few Debye lengths (10–50 m) could be generated in this plasma. Other models of ESW generation are discussed, including beam instabilities and spontaneous generation out of turbulence. The results of two types of ESW propagation (in situ and remote sensing) studies are also presented. The first involves the propagation of bipolar type ESWs from one Cluster spacecraft to another in the magnetosheath, thus obtaining the velocity and size of the solitary structures. The structures were found to be very flat, with large scale perpendicular to the magnetic field (>40 km) and small scale parallel to the field (<1 km). These results were then discussed in terms of various models which predict such flat structures to be generated. The second type of propagation study uses striated Auroral Kilometric Radiation (SAKR) bursts, observed on multiple Cluster satellites, as tracers of ion solitary waves in the upward current region. The results of all studies discussed here (pulse characteristics and ESW velocity, lifetime, and size) are compared to in situ measurements previously made on one spacecraft and to theoretical predictions for these quantities, where available. The primary conclusion drawn from the propagation studies is that the multiple spacecraft technique allows us to better assess the stability (lifetime) of ESWs, which can be as large as a few seconds, than can be achieved with single satellites.  相似文献   

5.
The whistler-mode waves and electron temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the plasma sheet. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive electron temperature anisotropy are simultaneously observed. Theoretic analysis shows that the electrons with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (Electron cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current sheet. The combined observations of energetic electron beams and waves show that after the southward turning of magnetic field, energetic electrons in the reconnection process are accelerated by the whistler-mode waves.  相似文献   

6.
7.
The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).  相似文献   

8.
Nonlinear dust acoustic dressed soliton are studied in a four component dusty plasma. Nonthermal distributions for electrons are considered. The Korteweg–de Vries (KdV) equation is derived by using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for dressed soliton is obtained by the renormalization method. The expressions for higher order correction are determined using a series solution technique.  相似文献   

9.
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered.  相似文献   

10.
11.
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region.  相似文献   

12.
The linear mechanism of generation, intensification and further nonlinear dynamics of internal gravity waves (IGW) in stably stratified dissipative ionosphere with non-uniform zonal wind (shear flow) is studied. In case of the shear flows the operators of linear problem are non-selfadjoint, and the corresponding Eigen functions – nonorthogonal. Thus, canonical – modal approach is of less use studying such motions. Non-modal mathematical analysis becomes more adequate for such problems. On the basis of non-modal approach, the equations of dynamics and the energy transfer of IGW disturbances in the ionosphere with a shear flow is obtained. Exact analytical solutions of the linear as well as the nonlinear dynamic equations of the problem are built. The increment of shear instability of IGW is defined. It is revealed that the transient amplification of IGW disturbances due time does not flow exponentially, but in algebraic – power law manner. The effectiveness of the linear amplification mechanism of IGW at interaction with non-uniform zonal wind is analyzed. It is shown that at initial linear stage of evolution IGW effectively temporarily draws energy from the shear flow significantly increasing (by an order of magnitude) own amplitude and energy. With amplitude growth the nonlinear mechanism turns on and the process ends with self-organization of nonlinear solitary, strongly localized IGW vortex structures (the monopole vortex, the transverse vortex chain or the longitudinal vortex street). Accumulation of these vortices in the ionospheric medium can create the strongly turbulent state.  相似文献   

13.
Collisionless unmagnetized plasma consisting of a mixture of warm ion-fluid and isothermal-electron is considered, assuming that the ion flow velocity has a weak relativistic effect. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation for small – but finite-amplitude electrostatic ion-acoustic waves in this plasma. The semi-inverse method and Agrawal’s method lead to the Euler–Lagrange equation that leads to the time fractional KdV equation. The variational-iteration method given by He is used to solve the derived time fractional KdV equation. The calculations show that the fractional order may play the same rule of higher order dissipation in KdV equation to modulate the soliton wave amplitude in the plasma system. The results of the present investigation may be applicable to some plasma environments, such as space-plasmas, laser-plasma interaction, plasma sheet boundary layer of the earth’s magnetosphere, solar atmosphere and interplanetary space.  相似文献   

14.
There are a lot of objects in space associated with dusty plasma inclusions. Such inclusions may bear a prolonged shape and behave as waveguides for ion-sound waves. In the case of space plasmas, the dust particles can possess both negative charge, due to electron attachment, and positive one, due to photoionization. In this paper the propagation of linear and non-linear ion-sound wave pulses in the dusty plasma waveguides, possessing positive charge, is studied. It has been demonstrated that non-linear dynamics of baseband pulse propagation in plasma waveguide possesses essentially non-solitonic behavior. Namely, propagation of a long ion-sound pulse leads to an excitation of a shock-like wave but not a stable localized nonlinear pulse. Also, when a Korteveg–de Vries (KdV) soliton is incident onto the dusty plasma waveguide, some part of the soliton energy is captured by the waveguide and transformed into a multi-pulse structure. Additionally, an interaction of dusty plasma inclusions with KdV soliton can lead to the occurrence of transverse instabilities of the soliton and its eventual destruction.  相似文献   

15.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

16.
In this paper, we show the potential of satellite altimetry to study the interaction of Rossby waves with the shear flow. The Miles-Ribner approach, which was developed in gas dynamics in the 1960 s, is used to describe Rossby waves interacting with the Gulf Stream and Kuroshio areas. The region of interaction is approximated by a nonzonal vortex layer. We apply the main formulations of the problem of a nonzonal vortex layer on the β-plane in the formulation of Miles-Ribner to observations in the real ocean. Earlier, we showed that the interaction of waves with a nonzonal flow gives rise to a new class of solutions, which is absent in the case of a zonal flow. This new class of solutions can be interpreted as the pure emission of Rossby waves by the nonzonal flow. We apply this theoretical approach to the areas of the Gulf Stream and Kuroshio as well. We use for analysis altimetry data available at Copernicus Marine Environment Monitoring Service. The analysis of Hovmöller diagrams in the areas under consideration confirms the previously obtained theoretical conclusions of the problem of the interaction of planetary waves with a nonzonal flow on the β-plane in the formulation of Miles-Ribner. The incident waves, as well as refracted and reflected waves are distinguished. The speed of refracted and reflected waves exceeds the speed of incident waves, which confirms the conclusions about the existence of mechanisms for the amplification of planetary waves when they interact with a nonzonal flow.  相似文献   

17.
超燃燃烧室等离子体点火和火焰稳定性能   总被引:13,自引:3,他引:10  
为了研究热等离子点火器在超燃冲压发动机中的应用,在来流马赫数2.0工况下,针对乙烯和氢气两种燃料,进行了超燃环境中等离子体点火的试验和仿真研究.在来流总温1 500~1 950 K,燃料当量比0.1~0.55范围内对等离子点火器的点火和改善燃烧性能的性质进行了详细分析.结果显示:对于氢气和乙烯燃料,等离子体点火器使两种燃料的点火性能均得到明显改善,点火延迟时间大大缩短,燃料着火范围扩大、贫燃极限当量比降低.但未观察到其在加速掺混以及改善燃烧性能方面的明显作用.进行了与乙烯燃烧试验对应的数值仿真工作,选用了两种乙烯化学反应模型进行对比研究.仿真结果显示:8步9组分反应模型与试验结果符合较好,而3步6组分反应模型过高的估计了反应剧烈程度,燃烧室压力值偏高,压力起始上升位置偏向上游.所用的8步模型比3步模型更适合于超燃燃烧室中乙烯反应的模拟.  相似文献   

18.
The propagation of a strong cylindrical shock wave in an ideal gas with azimuthal magnetic field, and with or without axisymmetric rotational effects, is investigated. The shock wave is driven out by a piston moving with time according to power law. The ambient medium is assumed to have radial, axial and azimuthal component of fluid velocities. The fluid velocities, the initial density and the initial magnetic field of the ambient medium are assumed to be varying and obey power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The shock wave moves with variable velocity and the total energy of the wave is non-constant. The effects of variation of the initial density and the Alfven-Mach number on the flow-field are obtained. A comparison is also made between rotating and non-rotating cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号