首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The existence of a “dense” lunar ionosphere has been controversial for decades. Positive ions produced from the lunar surface and exosphere are inferred to have densities that are ?106107 m?3 near the surface and smaller at higher altitudes, yet electron densities derived from radio occultation measurements occasionally exceed these values by orders of magnitude. For example, about 4% of the single-spacecraft radio occultation measurements from Kaguya/SELENE were consistent with peak electron densities of ~3×108 m?3. Space plasmas should be neutral on macroscopic scales, so this represents a substantial discrepancy. Aditional observations of electron densities in the lunar ionosphere are critical to resolving this longstanding paradox. Here we theoretically assess whether radio occultation observations using two-way coherent S-band radio signals from the Lunar Reconnaissance Orbiter (LRO) spacecraft could provide useful measurements of electron densities in the lunar ionosphere. We predict the uncertainty in a single LRO radio occultation measurement of electron density to be ~3×108 m?3, comparable to occasional observations by Kaguya/SELENE of a dense lunar ionosphere. Thus an individual profile from LRO is unlikely to reliably detect the lunar ionosphere; however, averages of multiple (~10) LRO profiles acquired under similar geophysical and viewing conditions should be able to make reliable detections. An observing rate of six ingress occultations per day (~2000 per year) could be achieved with minimal impact on current LRO operations. This rate compares favorably with the 378 observations reported from the single-spacecraft experiment on Kaguya/SELENE between November 2007 and June 2009. The large number of observations possible for LRO would be sufficient to permit wide-ranging investigations of spatial and temporal variations in the poorly understood lunar ionosphere. These findings strengthen efforts to conduct such observations with LRO.  相似文献   

3.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

4.
5.
6.
The effect of the rocket exhaust products on the D-region of the ionosphere is investigated with the help of Very low frequency (VLF) electromagnetic wave propagation characteristics within the Earth-ionosphere waveguide. The changes in the electron density profile are computed from the observed VLF signal amplitude perturbations about 3 dB during the rocket launch. We find a localized electron depletion in the lower ionosphere at an altitude of around 58 km, that is thought to be originated by the attachment of ionospheric ion and molecular hydrogen along with water molecule in the exhaust product of first stage burn of Geosynchronous Launch Vehicle (GSLV) rocket at the time of GSLV launched from Sriharikota, India, on 27 August 2015 at 11:22 UT (16:52 IST). The ionospheric depletion perturbed the navigational VLF signal (VTX = 17 kHz) 134 s after the launch of the GSLV rocket.  相似文献   

7.
Electrons accelerated in the corona during solar activity give rise to radio emission events that can be observed over a wide range of frequencies. Among different finer-scale structures in the dynamic spectra observed in the radio range, fast transients with extents of some milliseconds known as solar radio spikes are observed accompaning the background continuum emission. Fundamental to the generation of radio spikes is a propagating electron beam and following its evolution allows us to understand the physical processes occurring in the solar corona. With the use of a numerical Fokker–Planck code we follow a previous numerical study to simulate the propagation of an electron beam pulse injected in a small region at the top of a magnetic field and outwards the solar corona under typical flare conditions. It was found that in large ambient densities of 1010 cm−3 at the injection point, Coulomb collision effects have an important effect on the propagation of the electrons, causing that the injected electrons thermalize faster in a time of 0.1 and 0.4 s for an electron distribution with a low-energy cut off of 16 and 7 keV respectively and a spectral index of 3. For a tenous ambient medium of density 109 cm−3 thermalization occurs only for an electron distribution with smaller low-energy cut off (7 keV) with a duration of 1.5 s, while for a larger low-energy cut off (16 keV) the loss of accelerated electrons is very slow, regardles of the spectral index (3,7). The electron loss time by Coulomb collisions, which depends on the low boundary ambient density, might be an important parameter that influences the generation of radio spikes due to the formation of instabilities in the corona.  相似文献   

8.
This paper demonstrates active space debris removal using spaceborne laser systems. The laser beam and the surface of the target are discretised into multiple rays and finite elements, respectively, for laser-target interaction modelling, in which the laser ablation process is investigated. A high-fidelity attitude/orbit propagator tool is developed to account for both the linear impulse and angular impulse induced by the laser engagement and other perturbations. The laser system is activated only when three switch criteria are satisfied. In numerical simulations, laser pulses from international space station are generated to deorbit a 3U CubeSat with initially tumbling modes. The results validate the effectiveness of deorbiting tumbling CubeSats using spaceborne laser engagement, with the perigee height lowered by approximately 2.4km in around 30min after 2h propagation. It is also found that the laser engagement becomes more effective for an initially faster rotating object.  相似文献   

9.
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h=+3.0h=+3.0 km for the VTX-Malda path and h=+1.8h=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.  相似文献   

10.
11.
12.
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter–receiver great circle path (TRGCP) during local noon time 00:36–03:13 UT (09:36–12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h′) in km and inverse scale height parameter (β) in km−1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km−1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.  相似文献   

13.
14.
15.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

16.
17.
Classic solar atmospheric models put the Chromosphere-Corona Transition Region (CCTR) at 2 Mm above the τ5000=1 level, whereas radiative MHD (rMHD) models place the CCTR in a wider range of heights. However, observational verification is scarce. In this work we review and discuss recent results from various instruments and spectral domains. In SDO and TRACE images spicules appear in emission in the 1600, 1700 and 304 Å bands and in absorption in the EUV bands; the latter is due to photo-ionization of H i and He i, which increases with wavelength. At the shortest available AIA wavelength and taking into account that the photospheric limb is 0.34 Mm above the τ5000=1 level, we found that CCTR emission starts at 3.7 Mm; extrapolating to λ=0, where there is no chromospheric absorption, we deduced a height of 3.0±0.5 Mm, which is above the value of 2.14 Mm of the Avrett and Loeser model. Another indicator of the extent of the chromosphere is the height of the network structures. Height differences produce a limbward shift of features with respect to the position of their counterparts in magnetograms. Using this approach, we measured heights of 0.14±0.04 Mm (at 1700 Å), 0.31±0.09 Mm (at 1600 Å) and 3.31±0.18 Mm (at 304 Å) for the center of the solar disk. A previously reported possible solar cycle variation is not confirmed. A third indicator is the position of the limb in the UV, where IRIS observations of the Mg ii triplet lines show that they extend up to 2.1 Mm above the 2832 Å limb, while AIA/SDO images give a limb height of 1.4±0.2 Mm (1600 Å) and 5.7±0.2 Mm (304 Å). Finally, ALMA mm-λ full-disk images provide useful diagnostics, though not very accurate, due to their relatively low resolution; values of 2.4±0.7 Mm at 1.26 mm and 4.2±2.5 Mm at 3 mm were obtained. Putting everything together, we conclude that the average chromosphere extends higher than homogeneous models predict, but within the range of rMHD models..  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号