首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 31 毫秒
1.
为了研究在旋转状态下温度比对气膜与主流掺混区域的影响,采用了数值模拟的方法对此进行了分析.结果表明:与静止状态相比,气膜出流在旋转状态下会发生偏转.当温度比固定,随着转速的增加,吸力面上气膜覆盖区域向高旋转半径方向偏转;但在压力面上,覆盖区域向低旋转半径方向偏转.在旋转速度固定时,随着冷却气膜和燃气温度比的增加,气膜覆盖区域向高旋转半径方向偏转.旋转同时会降低气膜冷却效率,而温度比对此的影响却很小.   相似文献   

2.
旋转状态下涡轮叶片压力面气膜冷却特性   总被引:3,自引:0,他引:3  
通过1.5级涡轮叶片旋转气膜冷却实验,揭示了整级涡轮叶片在旋转状态下的气膜冷却规律.实验中,主流雷诺数为8×104,旋转数分别为2.092,2.324和2.448,吹风比从0.3到3.0变化,冷却工质分别采用空气和二氧化碳,对应射流主流密度比分别为1.03和1.57.叶片表面喷有宽幅液晶,通过高精度CCD相机得到表面温度场.结果表明:压力面上,气膜冷却效率随吹风比的增大而升高,随旋转数的增大而降低;气膜轨迹向高半径方向偏转,偏转程度随旋转数的增大而加剧;提高射流主流密度比,有利于提高冷却效率.  相似文献   

3.
通过对带有90°倾角圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同主流雷诺数、旋转数和吹风比情况下前缘面与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律.结果表明,冷气受到离心力与哥氏力的共同作用向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会削弱气膜冷却效果,高吹风比则不利于气膜孔下游区域的冷却.各气膜孔的流量系数随吹风比的增大而增大,随旋转数的提高而减小.在后缘面侧,相同工况下各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值.   相似文献   

4.
气膜冷却是应用于航空燃气轮机上的冷却技术,旋转及表面曲率是影响气膜与 主流掺混区域的重要因素,通过数值计算方法对旋转状态下曲率对气膜与主流掺混区域的影 响进行了研究,湍流模型选取了k-ω模型.增加旋转速度,会引起吸力面气膜的分离; 固定转速,降低表面曲率半径,压力面气膜发生分离,吸力面气膜冷却效果得到改善.当动 量流量比在小于1的范围内变化时,旋转只改变压力面气膜与主流掺混区域的分布,而对吸 力面没有影响.   相似文献   

5.
曲率对旋转态气膜冷却效率影响的数值模拟   总被引:1,自引:0,他引:1  
通过对旋转状态下曲率叶片模型上气膜冷却现象的流动和换热进行数值模拟,得到了不同主流雷诺数、吹风比和旋转数情况下吸力面和压力面上的冷却效率分布.计算选用κ-ω和SST(Shear-Stress Transport)湍流模型,主流雷诺数Re=3 198.4~6 716.6,吹风比M=0.2~1.2,旋转数Rt=0~0.015 9.结果表明:旋转数的增大导致气膜孔下游中心区域的冷却效率下降,但使压力面整场的冷却效果略有提高;吹风比的增大使得吸力面和压力面上的冷却效率逐渐降低,主流雷诺数的变化对壁面整体冷却效果则影响不大.此外,相同工况下吸力面上的冷却效率要高于压力面上的对应值.  相似文献   

6.
采用圆弧模型,测量了旋转状态下凸表面气膜冷却效率 η ad和换热系数 h f的分布规律,重点研究旋转数 Rt=ωD/u 对气膜冷却的影响.叶片表面温度采用先进的液晶测温技术进行测量.结果表明:①在旋转离心力和哥氏力的共同作用下,气膜轨迹向高半径方向发生了明显的偏移,并且转速越高偏移角度越大;②旋转使得气膜冷却效率降低,换热系数上升;③在旋转状态下,气膜发生了分离再附壁的现象.  相似文献   

7.
  总被引:1,自引:0,他引:1  
为了抑制气膜冷却过程中耦合涡的产生,提出了一种切向出流台阶缝冷却结构,并对其在涡轮导叶吸力面、压力面上布置时的气动性能及冷却特性进行了数值研究。结果表明:在吸力面叶栅通道喉部附近布置时仅使总压损失增加约2%;在压力面布置则能使总压损失、能量损失在低吹风比工况各降低约2.5%,同时出口气流角的增加不到0.1%,而且损失系数和出口气流角对吹风比的变化也不敏感。吸力面、压力面缝后冷却效率均较高,在高吹风比工况平均都有约8%轴向弦长的叶片表面冷却效率接近1.0。  相似文献   

8.
旋转状态下叶片前缘复合换热实验   总被引:1,自引:0,他引:1  
通过液晶示温瞬态实验方法,对旋转状态下涡轮叶片前缘带气膜出流的冲击冷却结构的换热特性进行了研究,获得了哥氏力、离心力对复合换热效果的影响.实验参数:射流进口雷诺数Re=4 000,旋转数Ro=0~0.139.实验结果表明:随着旋转数的升高,实验模型的整体换热效果逐渐减弱,在旋转数为0.139时,与静止状态相比冲击面平均努塞尔数Nu下降了33%,压力面和吸力面分别下降了20.5%和7.5%;哥氏力的作用加速了射流的扩散,是造成旋转换热减弱的主要原因;哥氏力和离心力的共同影响使得吸力面的换热好于压力面;气膜孔的存在改变了流动结构,极大的增强了孔周边区域的换热效果.   相似文献   

9.
中心进气复杂旋转盘压力特性的实验研究   总被引:1,自引:0,他引:1  
中心进气具有两个出口的旋转盘系统中静盘表面沿半径方向的静压分布由实验方法获得.针对转速、冷却气体流量以及叶片冷却孔的存在与否对腔内流动特性的影响进行了分析.结果表明:在本实验范围内,静盘表面静压沿半径方向先减小,后增大.静盘表面静压随着总流量的增加而增加,随转速增加而降低.当减少盘面出流孔的数量时,静盘表面静压将会增加.当冷却气体流量较大时,盘腔内不能形成明显的旋转核心.  相似文献   

10.
旋转状态下涡轮叶片前缘的流动与换热   总被引:4,自引:0,他引:4  
用数值模拟的方法对旋转状态下涡轮叶片前缘冷却结构进行了数值研究,该结构由进气腔、叶片尾缘块和前缘块构成,对此结构不同的旋转速度情况进行了计算,根据计算结果分析了旋转对涡轮叶片前缘流动与换热的影响.计算结果表明,旋转状态下带气膜出流的冲击流动中,前尾缘冲击面的换热随着转速的增加而减小,且尾缘冲击面的换热比前缘冲击面的换热要好;同时前尾缘冲击面换热的差别随着转速的增加将越来越小.  相似文献   

11.
共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究   总被引:1,自引:0,他引:1  
针对共轴刚性模型旋翼悬停状态,开展了桨叶表面压力测量试验与数值模拟研究。试验采用微型压力传感器进行桨叶表面压力测量,不仅获得了桨叶表面压力的试验数据,同时为CFD计算方法计算桨叶表面压力提供了验证数据。计算与试验结果对比吻合度良好,验证了CFD计算方法的有效性。研究获得了共轴刚性旋翼上下旋翼桨叶表面的流动情况和压力特性,结果表明:对于上下各4片桨叶的共轴刚性旋翼,桨叶表面压力随着桨叶旋转呈周期性变化,旋转一周出现8个小周期;在上下旋翼扭矩配平的悬停状态,下旋翼桨叶大部分区域受下洗流影响,下旋翼剖面拉力低于上旋翼;在桨尖区域,下旋翼的桨距角大于上旋翼,受各自上洗流的影响,下旋翼剖面拉力高于上旋翼。   相似文献   

12.
在Shallow-Water结冰热力学模型的基础上,搭建了一套适用于三维旋转表面的非稳态结冰模型,采用Jacobi迭代法和Gauss-Seidel迭代法对表面结冰进行非稳态迭代求解。用所提模型对简化后的旋转桨叶模型进行计算,并与FENSAP软件结果进行对比,验证了所提模型的准确性,分析了转速、水滴直径和液态水含量等因素对旋转表面结冰冰形和水膜流动的影响。结果表明:随着转速的增加,结冰范围和水膜覆盖范围偏移愈加明显;结冰范围和水膜覆盖范围随水滴直径增长逐渐增加,水膜厚度也逐渐增大;结冰厚度和水膜厚度随液态水含量增长而相应增加,水膜覆盖范围也明显变大。  相似文献   

13.
用大涡模拟的方法考察了静止和旋转状态下有直径4mm,35°流向倾斜圆柱孔的平板上气膜冷却的流动和换热,将静止状态预测的速度型与实验数据进行对比验证了计算结果的合理性.在固定吹风比为0.5、冷气进口雷诺数为2 588的情况下,静止和旋转状态的涡量分布出现明显差异,且旋转状态射流与主流相互作用的剪切层沿展向偏离气膜孔的几何中心线,使得原有对转涡对不再关于孔中心线对称分布,漩涡识别技术也发现典型的涡结构受旋转影响发生形态和运动规律的改变,进而影响湍流结构对主流和冷气掺混的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号