共查询到20条相似文献,搜索用时 15 毫秒
1.
Xingming Bao Wenbin Xie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195 Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux. 相似文献
2.
J. Perez-Peraza J. Martinell A. Villareal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):197-200
We have examined the conditions for the establishment of charge equilibrium of solar particles during their acceleration. We derive criteria for charge interchange with the atomic and ionized hydrogen at the particles'sources, for two different acceleration mechanisms. It is found that charge interchange is established whenever a particle event is produced. The implications related to mass and charge spectra of particles are discussed. The measured charge state of solar particles cannot in general be directly used for diagnosis of the source temperature, so we suggest another alternative based on the emitted radiation from electron capture. 相似文献
3.
H. S. Hudson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):247-250
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(8):117-120
We discuss some recent observations of red dwarf flare stars. When observed over periods of about 8 hours, each of 4 flare star systems displayed at least one major flare at 20 cm. Quiescent emission at 6 cm was seen from UV Ceti and EQ Peg A, but flares were much less frequent at 6 cm than at 20 cm. We also summarize earlier observations of quiescent emission from UV Ceti. Observations of highly polarized flares with brightness temperatures in excess of 1010 K appear to be common on red dwarf stars. We have also found narrowband flares which strengthen the argument that a coheren emission mechanism is involved in these flares. One of those narrowband flares allows us to place severe constraints on conditions in the flare source, and if the flare is cyclotron maser emission it seems unlikely that magnetic reconnection is involved in the flare. 相似文献
5.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1841-1845
The hydrogen Hα line has been found to be linearly polarized at some locations and times during a June 15th 2001 flare observed with THEMIS. This flare was accompanied by radio pulses and hard X-ray emission. Linear polarization is below the noise level in the flare kernels. However, it is present at the edges of these kernels, in the line center and near wings where the polarization degree exceeds 4%. The directions of polarization are not random but close within ±15° to the tangential and radial directions. This polarization can be due either to electron beams and their associated return currents or to electron and proton beams. 相似文献
6.
A.O. Adewale E.O. Oyeyemi J. Olwendo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector. 相似文献
7.
H.N. Wang Y.M. Cui R. Li L.Y. Zhang H. Han 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1464-1468
Nowadays operational models for solar activity forecasting are still based on the statistical relationship between solar activity and solar magnetic field evolution. In order to set up this relationship, many parameters have been proposed to be the measures. Conventional measures are based on the sunspot group classification which provides limited information from sunspots. For this reason, new measures based on solar magnetic field observations are proposed and a solar flare forecasting model supported with an artificial neural network is introduced. This model is equivalent to a person with a long period of solar flare forecasting experience. 相似文献
8.
V.V. Korneev S.L. Mandelstam S.N. Oparin A.M. Urnov I.A. Zhitnik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):139-144
On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the Suprathermal electron model (SEM) was proposed. This model suggests the existance of the multitemperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies E ? 10 keV and small densities ~ 1–5% relative to the thermal component. 相似文献
9.
Origin of coronal and interplanetary shock and particle acceleration of a flare/CME event 总被引:2,自引:0,他引:2
Y.H. Tang Y. Dai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2609-2612
By using radio data from ground-based telescopes (from 270 MHz to 25 MHz), and from the Radio and Plasma Wave experiment (WAVES) on board the WIND spacecraft (1–14 MHz and several kHz-11 MHz), as well as FY -2 satellite data, the origin of coronal and interplanetary shock and particle acceleration of the 14 July 2000 flare/CME event (the Bastille day event) have been studied. Main conclusions are as follows: (1) We investigate the causal relationship between metric type 11 bursts observed by the digital IZMIRAN radio spectrograph and type II radio emissions in the frequency range from 1–14 MHz and several kHz-11 MHz observed by the WAVES/WIND. The analysis indicate that the fast CME is the origin of both coronal and interplanetary shocks. (2)According to the time profiles of Hard X-ray, and energetic particles (include proton, 3He, and 4He) from FY-2 satellite, it is obvious that the Bastille day event is the event, in which both impulsive and gradual phenomena occur. The energetic particles accelerated not only in flare but also in CME. 相似文献
10.
L.I. Miroshnichenko W.Q. Gan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian–Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); (4) asymmetric magnetic geometry and new magnetic topology models of the near-limb flares; (5) modeling of self-consistent time scenario of the event. 相似文献
11.
Najat M.R. Al-Ubaidi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The purpose of this research work is to validate the ionospheric models (IRI and CHIU) to assess its suitability and usefulness as an operational tool. The ionospheric model is a computer model designed to predict the state of the global ionosphere for 24 h. The scope was limited to conduct comparisons between the predicted F2 layer critical frequencies (f0F2) against observed ionosonde data. The ionospheric prediction model (IPM) was designed to predict by using monthly median sunspot number, while the observation data are taken from two digital ionospheric sounding stations (Okinawa, 26.28N, 127.8E and Wakkanai, 45.38N, 141.66E) which lies within the mid-latitude region of the globe. Analysis of the f0F2 data from stations for year (2001) with high solar activity and year (2004) with low solar activity, four months (March, June, September and December) chosen based primarily on data availability. From results it seen that the ratio between monthly median predicted and observed f0F2 values for each model used in this research work and for the chosen months was nonlinear with local time, so the empirical formula for applying correction factors were determined, these formula can be used to correct the error occurred in predicted f0F2 value. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1876-1881
Type III-L bursts constitute a class of type III bursts that are intense, complex, and of long duration at hectometric wavelengths. They are often associated with major flares and fast coronal mass ejections. Several observations suggested that the electron beams that produce these complex hectometric emissions could be accelerated and injected in the low or in the middle corona. In this study, we revisit the origin of these bursts by tracing the progression of the events from the low corona to the interplanetary medium. We show that type III-L features are related to sudden changes in the radio emission observed at metric and decametric wavelengths, in particular the onset of new emitting sources at positions that can be at large distances from the flare site. 相似文献
13.
S.R. Kane G.J. Hurford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2489-2493
In flares that occur behind the limb, the intense chromospheric (foot-point) part of the hard X-ray source is occulted, thus permitting good observations of the coronal component. Between 15 and 18 April 2002, RHESSI observed a series of small (GOES Class C) flares produced by the active region NOAA 9905 as it rotated behind the west limb. A preliminary analysis of the observed hard X-ray sources in the 17–18 April 2002 flares has confirmed that flare-associated sources of gradual 12–25 keV X-ray emission can exist in the corona at heights up to 27000 km. 相似文献
14.
Hard X-ray and high-frequency decimetric radio observations of the 4 April 2002 solar flare 总被引:1,自引:0,他引:1
S.R. Kane H.S. Sawant J.R. Cecatto M.C. Andrade F.C.R. Fernandes M. Karlicky H. Meszarosova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2503-2508
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona. 相似文献
15.
T. Yokoyama H. Nakajima K. Shibasaki V.F. Melnikov A.V. Stepanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2517-2520
We report a Nobeyama Radioheliograph (NoRH) microwave observation of a propagating feature of non thermal emission in a solar flare. The flare had a very extended source well resolved by NoRH. In the rising phase of the microwave burst, a non-thermal gyrosynchrotron source was observed by the high-rate (10 images per second) observations to propagate from one end of the loop to the other with a speed of 9 × 104 km s−1. We interpret this non-thermal propagating source is emitted from streaming electrons. 相似文献
16.
M. Scholer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):121-124
Numerical models of impulsive solar flare particle events usually assume the radial diffusion coefficient to be independent of energy per nucleon, T, although the observations indicate a T0.5 dependence (constant mean free path). The assumption of a constant diffusion coefficient results in a preservation of a power law injection spectrum at all radial distances throughout the event. We investigate the effect of an energy dependent diffusion coefficient on the spectrum of flux maxima at a fixed point in interplanetary space. This spectrum is harder than that of initial differential number densities close to the sun. Furthermore, the spectrum hardens with increasing radial distance which seems to be at variance with observations. 相似文献
17.
Kenneth R. Lang Robert F. Willson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):105-110
Very Large Array (V.L.A.) measurements at 20 cm wavelength map emission from coronal loops with second-of-arc angular resolution at time intervals as short as 3.3 seconds. The total intensity of the 20 cm emission describes the evolution and structure of the hot plasma that is detected by satellite X-ray observations of coronal loops. The circular polarization of the 20 cm emission describes the evolution, strength and structure of the coronal magnetic field. Preburst heating and magnetic changes that precede burst emission on time scales of between 1 and 30 minutes are discussed. Simultaneous 20 cm and soft X-ray observations indicate an electron temperature and electron density during preburst heating in a coronal loop that was also associated with twisting of the entire loop in space. We also discuss the successive triggering of bursts from adjacent coronal loops; highly polarized emission from the legs of loops with large intensity changes over a 32 MHz change in observing frequency; and apparent motions of hot plasma within coronal loops at velocities V > 2,000 kilometerspersecond. 相似文献
18.
R. C. Willson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):285-288
The Active Cavity Radiometer on board the SMM is providing high-quality measurements of the solar irradiance. After correction for the solar distance, the orbital displacement of the satellite, and the relativistic shift of irradiance due to the satellite motion, the observed standard deviation is in the range 10–15 parts per million in a 96-minute integration. Measurable solar variations occur on time scales of a few minutes to a few days. The total amplitude of the variations in the daily averages from February 16 to March 31, 1980, was 0.10% based upon 96-minute averages. 相似文献
19.
G.L. Huang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1191-1194
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1707-1711
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B ∼ 700–1200 G) in the slower moving (v ∼ 20–50 km s−1) western footpoint than in the faster (v ∼ 20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed. 相似文献