首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
涡轮叶栅尾缘冷气喷射对主流场干扰的物理模型的研究   总被引:1,自引:1,他引:1  
本文分析了叶片尾缘喷气与主流干扰的机理,改进了二维、可压缩的涡轮叶栅尾缘喷气模型,并以能量损失系数ξF 来反映冷气喷射对主流的气动影响。通过尾缘喷气模型与涡轮叶栅流场计算及附面层参数的关联,分析了冷气喷射后的气动损失。与实验结果的对比分析表明,该模型能较准确地反映叶栅尾缘冷气喷射与主流的掺混情况,适用于预测不同形式的叶栅尾缘喷气对叶栅气动性能的影响  相似文献   

2.
导叶冷却对涡轮级性能影响的数值研究   总被引:1,自引:1,他引:1  
针对某高压燃气三维扭转涡轮导叶全叶身冷气射流进行了数值模拟,详细分析了在设计转速下改变冷气流量对叶片气动性能、冷却效率和叶栅通道损失的影响;对比分析了在冷气流量相同的条件下,改变转速对涡轮级性能影响.结果表明:不同冷气流量对导叶冷却孔附近区域的静压影响较为明显,而对下游转子的型面静压影响不大;导叶冷气射流对叶栅通道内主流气流角影响较小;冷气流量占主流流量由2.50%增加至6.25%,叶片绝热壁温降幅达11.19%,导叶叶栅通道总压损失和能量损失分别增加了12.95%和12.01%,而涡轮级功率和级效率分别降低了2.39%和1.51%.   相似文献   

3.
为揭示叶片或机匣旋转条件和叶顶冷却对涡轮动叶气热性能的影响机理,选用LISA 1.5级涡轮动叶片,构建叶顶冷却孔,开展了不同冷气流量下的数值模拟研究。计算结果表明:不同旋转条件下,当冷气与主流的流量比为0.3%时,叶栅能量损失最低,当流量比为1.0%时,间隙泄漏流量最低、叶顶传热性能最好。叶片旋转、机匣旋转和平移运动都能降低泄漏损失和泄漏流量,叶片旋转时,叶栅出口下游上半叶高截面的能量损失最大降低约26.10%。旋转效应对泄漏损失的影响不随流量比变化而改变,但对叶栅总损失和叶顶传热品质的影响随流量比增加会不同。当流量比小于0.3%时,叶片旋转情况下叶栅总损失低于静止工况但高于机匣运动工况,且叶顶传热品质最优;当流量比大于0.7%时,叶片旋转使叶栅总损失最高,机匣运动使叶顶传热品质最优。  相似文献   

4.
带尾缘劈缝冷气喷射的涡轮叶栅性能实验及计算   总被引:2,自引:1,他引:2       下载免费PDF全文
通过平面叶栅实验和CFD数值计算方法,研究了叶片尾缘全劈缝冷气喷射下涡轮叶栅流场和气动性能。试验和计算发现,在冷气喷射条件下用不同损失系数描述涡轮叶栅性能,结论明显不同,用考虑冷气能量的能量损失系数评价气冷涡轮叶栅性能较为准确和客观。在较小的冷气流量下,劈缝冷气喷射使叶栅能量损失降低,尾缘劈缝冷气喷射可改善近尾迹区域的流动,减小尾迹亏损,降低尾迹掺混损失。尾缘劈缝冷气射流方向偏向叶片某型面,则尾迹损失峰值朝此型面偏移。  相似文献   

5.
王宇峰  蔡乐  刘勋  周逊  王仲奇 《推进技术》2019,40(5):996-1004
为进一步探究跨声速涡轮中吸力面切向冷气喷射对叶栅气动性能及气膜冷却效果的影响,以跨声速涡轮叶栅作为研究对象,采用数值模拟方法,通过在叶片吸力面不同位置开设切向冷气喷射槽,进行不同吹风比下的冷气喷射,对跨声速气冷涡轮叶栅的总体性能以及流场细节进行了详细研究。研究结果表明,吸力面切向冷气喷射有利于减小跨声速涡轮叶栅激波损失,叶栅最大马赫数可减小0.104;切向冷气喷射槽位于尾缘内伸激波反射点上游,且吹风比处于0.75~1.00内时,叶栅能量损失最小;吹风比的增大有利于减小甚至消除冷气槽内分离泡,并能够减小唇部激波强度。  相似文献   

6.
为了研究不同射流环境对航空发动机涡轮叶片气动损失的影响,采用数值模拟的研究方法,分别考虑压力面与吸力面2 种气膜冷却打孔方案,总结在不同吹风比条件下叶栅通道内部流场环境特点,以及不同流场环境下叶栅损失的变化规律。结果表 明:叶栅通道内部气膜冷却射流环境分为低动能比射流环境(动能比小于1)与高动能比射流环境(动能比大于1),这2种射流环境 的边界层、叶栅出口二次流损失、动能亏损情况以及叶栅出口的总压损失系数有不同的变化特点:在低动能比环境下,冷气射流会 贴附壁面流动,进而影响边界层;在高动能比环境下,冷气射流直接与主流掺混。吸力面的冷气射流对叶栅气动损失有较大影响, 当射流动能较大时,使叶栅总压损失变化50%以上;而压力面的冷气射流对叶栅气动损失影响很小,经过计算,压力面的冷气射流 仅使叶栅总压损失系数最大变化0.64%。  相似文献   

7.
针对某航空发动机涡轮导向器,采用数值模拟的方法研究了缘板安装缝隙泄漏流对叶栅通道流场结构及叶栅性能参数的影响,对比分析了不同泄漏流压力、缝隙宽度及缝隙相对位置条件下的泄漏量,及其对叶栅性能参数的影响规律.研究发现:在压差作用下冷气通过缘板安装缝隙进入燃气主流通道并在中段的位置形成螺旋涡系,对端壁二次流产生明显影响,其作用效果沿叶高方向逐渐降低,最大影响区域为44.44%叶高.计算结果表明:随着泄漏流压力的提高、缝隙宽度的增加、缝隙与发动机主轴方向夹角的变大,叶栅的能量损失系数和泄漏量都呈现出了单调增加的趋势.在研究的参数范围内,涡轮缘板安装缝隙导致的泄漏流可使叶栅的能量损失系数增加14%~62%.   相似文献   

8.
随着涡轮进口温度的提高.采用高效气膜冷却降低叶片表面温度成为涡轮设计的主要目标之一。本文采用接近真实条件下的冷气参数,在高速风洞中进行了在叶身不同位置的冷气喷射试验,并对试验结果采用CFD软件进行了数值模拟,分析了不同冷气位置、不同冷气喷射对叶栅总损失的影响。分析了冷气喷射流场的结构,数值模拟的总体性能参数与试验结果基本一致。  相似文献   

9.
计算涡轮叶片尾缘对开缝喷气的数值方法   总被引:4,自引:1,他引:4       下载免费PDF全文
为探讨涡轮叶片尾缘对开缝喷气对叶栅性能的影响,发展了可与主流场求解有机耦合,且能准确反应射流与主流相互干扰过程的喷气模型,结合涡轮叶片流场数值模拟,得到了不同喷气量下涡轮叶栅性能参数,计算与实验结果有较好的一致性,表明所采用的喷气模型能够较准确地模拟射流与主流的掺混过程,预测掺混效应。  相似文献   

10.
为控制涡轮叶栅中叶顶间隙泄漏流动和改善涡轮气动性能,将扫频式射流器(SJA)作为一种主动流动控制方法应用在涡轮叶栅的研究中。通过非定常数值计算,分析了SJA对涡轮叶栅叶顶间隙流动的作用过程以及作用机理,并且研究了不同工况下SJA对涡轮叶顶流场改善效果以及不同频率的SJA对叶顶流场的影响。结果表明:通过在涡轮叶栅上端壁增加单个SJA装置,可以有效地延迟上端壁的流动分离,其中最佳方案射流流量仅为进口总流量的0.35%,涡轮叶栅出口截面总压损失系数减少了11.48%。存在着最佳的频率284Hz,使SJA装置对流场的作用效果最佳,有效地改善了涡轮叶栅内的间隙流动。  相似文献   

11.
轮毂封严气体对高压涡轮二次流动的影响   总被引:5,自引:5,他引:5       下载免费PDF全文
1引言目前,国内外对封严冷气掺混已有一定的研究,宾夕法利亚大学的Mclean研究了转静子封严腔冷气孔位置以及冷气流量等对主流的影响,发现了很小一部分冷气也会对涡轮的性能和涡轮出口条件产生很大的影响[1,2]。Jakoby等人对涡轮内部转静子封严腔和主流通道中的流动进行了数值模  相似文献   

12.
采用气动传热耦合方法计算分析了轮毂封严冷气对多级涡轮流动结构、性能和热负荷的影响.结果表明:在多级涡轮中冷气与主流燃气的相互作用会显著影响盘腔流动结构以及冷气在封严腔出口间的分配,并导致冷却效果和性能随冷气流量非线性变化,在这种情况下采用气动传热耦合计算可以兼顾捕捉和考察温度调控能力和气动损失的急剧改变.在涡轮级间冷气带来的堵塞效应会使相邻涡轮级工况点沿特性线移动,下游涡轮级2.5%的封严冷气就可以导致上游涡轮主流流量变化约0.6%,膨胀比变化约1.2%.在涡轮级内部未经预旋的封严冷气会减小转子叶根气动载荷,并形成黏性剪切层造成掺混损失,同时通过改变端区二次涡强度来影响流动结构,最终导致涡轮性能下降.   相似文献   

13.
跨声速叶栅中气膜冷却对平面叶尖流动和传热特性的影响   总被引:1,自引:0,他引:1  
周凯  周超  钟芳盼 《航空动力学报》2013,28(11):2440-2447
采用数值模拟的方法,研究了主流跨声速条件下,高压涡轮中平面叶尖上气膜冷却的流动和传热特性.在不带冷却的平面叶尖上,激波在端壁和叶尖表面来回反射,从叶片中部到尾缘,叶尖表面传热系数呈现条带状分布.采用气膜冷却方法后,冷却气体使得叶尖间隙内的流体减速,激波和叶尖上表面传热系数分布的条带结构不明显.冷却气体覆盖了冷却孔下游的区域,当冷却孔进口和叶栅进口总压比从0.7增大到1.0时,叶尖平均气膜冷却效率从18.7%下降到11.5%.和不采用气膜冷却的平面叶尖相比,当气膜孔进口和叶栅进口总压比为0.9时,叶尖平均表面传热系数增加了16.9%,传热量降低了8.7%.   相似文献   

14.
考虑冷气掺混的涡轮气动性能数值研究   总被引:2,自引:0,他引:2  
张漫  乔渭阳  曾军  黄康才 《航空学报》2006,27(6):998-1004
采用数值求解雷诺平均N-S方程的方法,数值模拟了带冷气掺混的涡轮内部全三维黏性流场,研究了冷气掺混对涡轮流动损失和气动性能的影响。数值计算结果表明,对于具有单排孔冷气入射的气膜冷却情况,当入射角是30°时,随着冷气流量增加,流动损失减小;而对于多排气膜孔冷气入射,各排气膜孔冷气之间的干扰是引起流动损失的主要原因,对不同位置冷气流量的优化选择,可以明显减小前后排冷气的掺混损失。为了降低冷气掺混的流动损失,基于数值实验的结果,本文首次引入了叶片表面气膜孔沿径向交错排列结构。  相似文献   

15.
涡轮导叶前缘多排孔冷气掺混数值模拟   总被引:1,自引:1,他引:0  
针对某三维扭转冷却涡轮导叶在前缘开设3排冷却孔,冷却孔流向夹角均为90°,径向射流角分别为30°,60°和90°,分别采用点源项与真实孔射流两种方法对前缘冷却孔气动性能和冷却特性进行了对比研究,分析了点源项与真实孔冷气掺混机制以及不同径向射流角对叶栅通道流场和冷却特性的影响.结果表明:真实冷却孔射流对前缘附近约10%轴向弦长范围内的流动影响较大,冷却效果涵盖了整个导叶;点源项方法所得压力与非冷却涡轮很接近;冷气径向喷射角减小,真实孔模型导叶表面温度下降了8%~16%,而点源项模型导叶表面温度降低了21%~23%.在工程实际中不能将点源项法计算结果用作定量评估依据.   相似文献   

16.
采用数值方法研究了冷气掺混对高压涡轮气动性能和叶栅通道内部二次流动结构的影响,计算结果表明:冷气流量增加,冷却高压涡轮导叶和转子型面总载荷降低,导叶进、出口马赫数均减小,转子出口相对马赫数在径向0~0.55区域增大而在径向0.55~1.0区域减小.导叶进、出口气流角受冷气流量的变化影响较小.冷气流量由压气机进口流量的4.83%增加至14.49%,转子进口相对气流角在径向0.05~0.95区域增大而出口相对气流角在径向0.6~1.0区域减小,导叶绝热壁面冷却效率先升高后降低而转子绝热壁面冷却效率提高了19.33%.轮毂和机匣封严气呈束状进入转子叶栅通道且腔内封严气流动受旋转轮盘抽吸效应影响较大.   相似文献   

17.
涡轮叶片表面气膜冷却的传热实验研究   总被引:4,自引:3,他引:4  
对压力面和吸力面各有双排气膜孔冷却的涡轮导向叶片表面进行了详细的传热实验研究,在不同吹风比下获得了当地气膜冷却效率和换热系数,结合流场测量结果分析了叶片表面冷却和换热规律。结果表明不同孔排位置叶片表面气膜冷却效率和换热规律有很大不同,孔排位置一定时,冷却效果主要由吹风比决定。结果还表明尽管冷气喷射使型面换热系数随吹风比的增大而显著增大,气膜冷却还是能有效的降低型面的热负荷,其中以中吹风比喷射时冷却效果最为显著。  相似文献   

18.
在主流来流的速度值、湿度值和温度值分别为10 m/s、6.4 g/kg和50℃的实验条件下,对微管式紧凑型预冷器的结霜和抑霜性能进行了实验研究。在抑霜实验工况中,采用无水甲醇作为抑霜的有机溶剂,且在抑霜实验过程中喷射了三个不同质量比(0.75、1.0和1.25)的无水甲醇对预冷器进行抑霜。对不同实验工况的结霜和抑霜性能、压力损失系数、预冷器管束的壁面温度和预冷器的换热率进行了详细地分析。实验结果表明,在进行结霜实验时,当低温冷却剂流经预冷器的微细管束内部时,在预冷器的外侧会快速地凝结霜层,且霜层随着实验时间的增长而逐渐累积。然而,一旦向主流来流中喷射了三个不同质量比的无水甲醇之后,会产生非常明显的抑霜效果,主流的压力损失系数显著下降且预冷器的换热率明显提高。此外,预冷器微细管束的壁面温度也显著的增大了,其壁面温度均高于水的冰点,这是喷射无水甲醇能够产生抑霜效果的直接原因。在向主流喷射三个不同质量比的无水甲醇的抑霜实验中,当喷射的无水甲醇的质量比为1.0时的抑霜效果最佳。此外,根据对抑霜实验结果进行分析,可以进一步地推测:实现最优抑霜性能的最佳无水甲醇质量比可能介于1.0~1.25之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号