首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
提出了使用一维球列检测数控机床几何误差的方法,介绍了一线球列结构特点,测量机床几何误差的原理,以及采用一维球列法测量机床轴向定位误差、直线度误差、俯仰与偏摆角运动误差、滚转角误差。垂直度误差的结果.它可以测量机床的全部21项误差,具有精度高、效率高、价格低的优点,在机床的误差检测和补偿中具有一定的用途.  相似文献   

2.
浅谈视差     
1什么是视差?在时指示性仪表读数时,由于眼睛的位置不正确而造成的误差称为视差。从误差的来源说,视差与信读误差都是人员误差,但2者有根本的不同。首先,视差属于系统误差,具有一定的规律性,当眼睛的位置正确时,视差完全可以消除。而信读误差在正常情况下属于随机误差,一般没有规律,如果说有规律,那就是正态分布规律,估读误差是必然存在的,不可能完全消除。其次,估读误差与刻线的粗细、间隔大小有关,一般在O.1个分度值左右,而视差有时可以很大,达若干个分度值。在数显仪表中,视差根本不存在,而估读误差仍不可完全避免…  相似文献   

3.
随着我国航天事业的发展,登月探测器的研究日益显得重要。本文主要探讨奔月探测器在停泊轨道、转移轨道运行中,地面测控设备的误差对探测器各重要弧段定轨精度的影响。得出当仅使用USB设备时,定轨位置误差随设备误差基本成等量级变化;加入测角设备时,设备误差变化时,位置误差基本没有变化,可使用奔月轨道定轨最大位置误差达到10m。  相似文献   

4.
提出了飞机机体角运动会引起GPS测速误差这-GPS应用中较为精细的技术问题,推演了机体角运动引起的GPS测速误差与GPS天线安装位置,机体角速度和飞机姿态角,航向角的关系,用真实参数演算分析了这种误差的大小,并通过实际工程应用验证了分析这种误差后对提高试飞结果数据的真实性,准确性的效果,最后指出,飞机机体角运动引起的GPS测速误差是GPS用于飞机测速的一项不可忽视的主要误差。  相似文献   

5.
为了提高微机电(MEMS)陀螺仪的测量精度,研究了一种同时标定陀螺非正交误差和加速度敏感漂移误差的标定方法。设计了16位置的转台标定方案,分别以地球自转角速率和重力加速度作为角速率和加速度激励源,利用两组角速率数据迭代求解非正交误差和加速度敏感漂移误差,并以陀螺仪对地球自转角速率的敏感误差作为校正效果的评估依据。试验结果表明,该方法能够有效校正MEMS陀螺仪的非正交误差和加速度敏感漂移误差,提高了陀螺仪的测量精度,且易于工程实现。  相似文献   

6.
机载导弹火控系统误差分析研究   总被引:4,自引:0,他引:4  
论述了某型号飞机导弹火控系统精度误差分析理论和此误差分析系统的软件设计,给出了某型飞机导弹火控系统精度的数据模型和误差分析方法,从程度设想,软件结构设计,软件结构图和程序流程图诸方面对误差分析系统软件设计作了细致地分析和说明,该误差分析软件已成功地应用于某导弹火控系统精度试飞中,其设计经验可供有关人员借鉴和参考。  相似文献   

7.
本文简要叙述了惯性测量组合安装误差在其工具误差补偿中的重要意义。结合本体坐标系介绍了安装误差的定义,分析了安装误差的由来和计算公式,并在此基础上介绍了两种实用的安装误差调试方法。  相似文献   

8.
叙述气冷式梳状热电偶在主燃烧室出口高温燃气测量中的导热误差、辐射误差和速度误差,实验表明,气冷式梳状热电偶的测温误差在实验温度范围内小于4%。  相似文献   

9.
简要介绍了影响钻模组合夹具精度的主要原因,分析了原始误差,弹性变形误差,测量基准误差等对组装精度的影响,提出了正确使用夹具提高其精度的方法。  相似文献   

10.
在战斗机前风挡玻璃和火控系统显示装置的设计以及安装设计中,除了保证这些成品的使用性能外,还应考虑这些成品对瞄准精度的影响,尽可能减少对飞行员瞄准引起的误差。本文从几何光学和瞄准原理的角度,简要分析前风挡玻璃引起的火控系统显示装置的校靶误差和前风挡玻璃几何形状误差引起的飞行员瞄准误差,并提出修正这些误差的要求和方法。  相似文献   

11.
陀螺加速度计的结构误差指由仪表生产、装配,仪表向平台上安装及仪表结构在工作中受力变形等因素所造成的仪表测量误差。文中介绍了结构误差的产生机理及测定方法。  相似文献   

12.
分析了团队失误产生的一般过程,发现加强交流管理可以有效改善团队工作的整个过程,从而降低人为失误的发生.指出造成机组交流缺陷的多种原因.给出实际可行的交流方法以减少机组失误的产生。  相似文献   

13.
对由压电陶瓷的压电误差造成的扫描探针显微镜扫描器的运动误差进行了较详细的实验研究和理论分析,分析了各项误差的产生原因及其实验现象,据此可对误差进行判断和修正。  相似文献   

14.
李卫星  张月  陈曾平  徐世友 《航空学报》2016,37(3):1025-1035
宽带数字阵列雷达接收通道中存在随频率变化的幅相误差和互耦误差,会严重影响雷达性能。针对这一问题,提出了一种宽带数字阵列幅相与互耦误差联合校正算法。首先选取通带内多个离散频点,对于每个频点,将幅相误差和互耦误差作为一个整体,采用基于子空间原理的窄带校正算法估计其阵列失真参数,并计算校正矩阵;然后将其组合起来,构成频域离散校正矩阵;最后基于最小二乘准则,设计了宽带有限长脉冲响应(FIR)校正滤波器矩阵。利用该矩阵,可实现通带范围内任意带宽入射信号的校正。计算机仿真实验验证了该算法的有效性。对实测数据的处理结果表明该算法在宽带数字阵列雷达系统中具有实用价值。  相似文献   

15.
改进的容错惯性导航系统   总被引:6,自引:1,他引:6  
 用于余度捷联惯性测量单元(IMU)的故障检测及分离(FDI)方法的性能受到诸如输入轴不准,刻度因子误差以及偏倚这样的传感器误差的限制。本文采用分离偏倚估计方法以获得上述影响奇偶向量的传感器误差的线性组合的估计,然后将这些估计用于构成补偿的奇偶向量,该奇偶向量不包括传感器误差的影响。用经补偿的奇偶向量代替未经补偿的奇偶向量进行故障检测及分离判决以提高FDI的性能。仿真结果表明奇偶向量补偿算法可大大提高FDI的性能,特别是在飞行器做机动飞行时。  相似文献   

16.
根据维修差错一人的失误机理、差错的墨菲定律,以及事故链模型和JamesReason模型,提出了基于故障树的主动预先的维修差错分析方法,试图在直升机设计之中和直升机交付使用前,通过这种基于故障树的维修差错分析方法,找出设计中、使用维修及使用管理中出现的问题或维修差错,提出改进措施,防止在使用维修中出现维修差错。通过这种主动事前的预防维修差错分析方法,可以消除或减少维修差错,提高直升机的安全性。  相似文献   

17.
基于集中参数理论,建立了封闭差动人字齿轮传动系统动力学模型,模型中考虑了支撑的弹性变形、啮合齿轮副的时变啮合刚度激励、误差激励以及中间浮动构件的影响.引入斜齿轮啮合刚度公式按并联方式计算了人字齿时变啮合刚度,采用傅里叶级数法求解系统动力学方程,获得了系统动态均载系数,分析了偏心与齿频误差对系统均载特性的影响.研究结果表明:差动级均载系数对齿频误差敏感,随齿频误差的增加而增大,均载系数基本不受偏心误差的影响;封闭级均载系数对偏心误差敏感,随偏心误差的增加而增大,均载系数基本不受齿频误差的影响;齿频误差对差动级均载系数的影响比偏心误差对封闭级均载系数的影响大,差动级均载系数大于封闭级均载系数.   相似文献   

18.
以飞机数字化制造装配为依托,通过对飞机钣金组件在模拟量协调路线和数字量协调路线下产生误差环节的比较,着重分析了飞机钣金组件在数字化装配过程中产生的系统误差和随机误差的因素和造成误差累积的原因。针对减小在钣金零件制造路线、钣金组件装配路线、温度场变化、振动场变化、应力变化等环节的累积误差提出了改进措施。  相似文献   

19.
小轮齿面误差与调整参数误差敏感性研究   总被引:1,自引:0,他引:1  
研究SFT(spiral format tilt)加工法加工的弧齿锥齿轮小轮齿面误差与调整参数误差之间的敏感性关系.给出含刀倾法加工的弧齿锥齿轮齿面模型建立方法,基于齿轮啮合原理建立调整参数误差敏感性分析模型,推导了弧齿锥齿轮小轮的理论齿面方程和误差齿面方程,继而推导了机床调整参数误差作用下的齿面任一点加工误差的解析表达式,并提出了机床调整参数误差对齿面误差的影响系数概念,依此判断各项机床调整参数误差对齿面误差的影响程度.通过理论齿面和误差齿面的比较,确定了各项机床调整参数误差作用下的全齿面法向误差的变化规律.由解析法和数值法求解共同确定了弧齿锥齿轮加工过程中对齿面误差影响较大的调整参数误差项.研究结果可为弧齿锥齿轮齿面误差补偿修正提供理论依据和实践指导.   相似文献   

20.
航空发动机推力测量台架原理误差分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究影响航空发动机推力测量台架系统原理误差的因素及作用,针对发动机弹簧片支撑式推力测量台架,以推力偏心假设为基础建立其力学模型,采用理论分析和仿真验证相结合的方法对某试车台架进行原理误差分析.在给定条件下,台架在竖直平面和水平面内的角偏心远小于推力角偏心,并不会对推力测量造成显著影响,台架结构变形引起的角偏心也很小.相比之下,原理误差影响最大的因素依次为推力角偏心、热变形和弹阻力,原理误差分别为0.38%、0.16%和0.04%,应加以控制.当推力偏心量造成的原理误差不能满足精度指标时,需采用原位加载系统或者矢量推力测量台架来评估.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号