首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-state Kalman tracker is described for tracking a moving target, such as an aircraft, making use of the position and rate measurements obtained by a track-white-scan radar sensor which employs pulsed Doppler processing, such as the moving target detector providing unambiguous Doppler data. The steady-state filter parameters have been analytically obtained under the assumption of white noise maneuver capability. The numerical computations of these parameters are in excellent agreement with those obtained from the recursive Kalman filter matrix equations. The solution for the case when only the range measurements are available is obtained as a special case of this model. Graphs of normalized covariances and gains are presented to illustrate how the solution depends on different parameters  相似文献   

2.
PDAF with multiple clutter regions and target models   总被引:1,自引:0,他引:1  
This paper presents the theory of a new multiple model probabilistic data association filter (PDAF). The analysis is generalized for the case of multiple nonuniform clutter regions within the measurement data that updates each model of the filter. To reduce the possibility of clutter measurements forming established tracks, the solution includes a model for a visible target. That is, a target that gives sensor measurements that satisfy one of the target models. Other features included in the algorithm are the selection of a fixed number of nearest measurements and the addition of signal amplitude to the target state vector. The nonuniform clutter model developed here is applicable to tracking signal amplitude. Performance of this algorithm is illustrated using experimentally recorded over-the-horizon radar (OTHR) data.  相似文献   

3.
Analytical expressions are given for the steady state solution to a Kalman tracking filter used in a track-while-scan radar system. The radar sensor measures range and range rate, and both these measurements are utilized in the filter. The solution for range measurements only is obtained as a special case. Graphs are also given which show how the solution depends on different parameters.  相似文献   

4.
The potential for identifying aircraft using one or more radar range profiles, in conjunction with a correlator, is investigated. Two types of filter which maximize the expected value of certain correlation peaks are described. The effectiveness of one type of filter was investigated in identification experiments using an extensive data set of real radar range profiles of 24 different aircraft. The results suggest that reliable identification is possible provided aircraft aspect information is used and identifications are based on multiple profiles  相似文献   

5.
Radar signal processing is particularly important in tracking closely spaced targets and targets in the presence of sea-surface-induced multipath. Closely spaced targets can produce unresolved measurements when they occupy the same range cell of the radar. These issues are the salient features of the benchmark problem for tracking unresolved targets combined with radar management, for which this paper presents the only complete solution to date. In this paper a modified version of a recently developed maximum likelihood (ML) angle estimator, which can produce two measurements from a single (unresolved) detection, is presented. A modified generalized likelihood ratio test (GLRT) is also described to detect the presence of two unresolved targets. Sea-surface-induced multipath can produce a severe bias in the elevation angle measurement when the conventional monopulse ratio angle extractor method is used. A modified version of a recently developed ML angle extractor, which produces nearly unbiased elevation angle measurements and significantly improves the track accuracy, is presented. Efficient radar resource allocation algorithms for two closely spaced targets and targets flying close to the sea surface are also presented. Finally, the IMMPDAF (interacting multiple model estimator with probabilistic data association filter modules) is used to track these targets. It is found that a two-model IMMPDAF performs better than the three-model version used in the previous benchmark. Also, the IMMPDAF with a coordinated turn model works better than the one using a Wiener process acceleration model. The signal processing and tracking algorithms presented here, operating in a feedback manner, form a comprehensive solution to the most realistic tracking and radar management problem to date.  相似文献   

6.
An implementation is presented of the discrete time extended Kalman filter which the authors have found useful for sensor netting in a variety of tactical radar and ballistic missile defense (BMD) applications. A Potter square root version of the extended Kalman filter is used where vector measurements are processed serially. Both the state and covariance equations are initialized by processing past measurements. The initialization technique and the filter are used in two tactical radar tracking examples.  相似文献   

7.
The design and implementation of a multiple model nonlinear filter (MMNLF) for ground target tracking using ground moving target indicator (GMTI) radar measurements is described. Like the well-known interacting multiple model Kalman filter (IMMKF), the MMNLF is based on the theory of hybrid stochastic systems. However, since it models the probability distribution for the target in a region, rather than just the distribution's first and second moments, a nonlinear filter is able to capture more fine-grained detail of the target motion and requires fewer models than typical IMMKF implementations. This is illustrated here with a two-model MMNLF in which one motion model incorporates terrain constraints while the second is a nearly constant velocity (CV) model. Another feature of the MMNLF is that it enables incorporation of prethresholded measurements. To implement the filter, the target state conditional probability density is discretized on a set of moving grids and recursively updated with sensor measurements via Bayes' formula. The conditional density is time updated between sensor measurements using alternating direction implicit (ADI) finite difference methods, generalized for this hybrid application. In simulation testing against low signal-to-interference-plus-noise ratio (SINR) targets, the MMNLF is able to maintain track in situations where single model filters based on either of the component models or filters that use thresholded data fail. Potential applications of this work include detection and tracking of foliage-obscured moving targets.  相似文献   

8.
The design and implementation of a second-order nonrecursive moving target indication (MTI) radar filter using commercially available charge-transfer devices as delay lines are described. A simple technique is included to compensate for the device charge-transfer in-efficiency and its sensitivity is analyzed. Experimental laboratory tests and results in an operating radar system are reported showing the good performance of the realized MTI radar filter.  相似文献   

9.
在以前的研究中,无偏转测量误差协方差阵是基于当前测量值得到的.为了能利用所有历史数据以得到更精确的转换测量误差协方差阵估计,文中在均方意义下,推导了三维雷达的最优无偏转换测量误差协方差阵.  相似文献   

10.
A scheme to provide redundant sensor data in an automatic control system using the principle of functional redundancy is described. Normally there are three redundant radar altimeters used in the terminal phase of automatic landing of jet transport airplanes. This scheme replaces one of these altimeters with a data processing scheme based on a Kalman filter. The filter is driven by altitude rate and acceleration signals from the air data computer and vertical accelerometer. A special initialization technique employs the two altimeter signals. The feasibility of this scheme is indicated by tests in which data obtained from these several sensors during flight tests are used to drive the functionally redundant altimeter.  相似文献   

11.
Efficient Approximation of Kalman Filter for Target Tracking   总被引:1,自引:0,他引:1  
A Kalman filter in the Cartesian coordinates is described for a maneuvering target when the radar sensor measures range, bearing, and elevation angles in the polar coordinates at high data rates. An approximate gain computation algorithm is developed to determine the filter gains for on-line microprocessor implementation. In this approach, gains are computed for three uncoupled filters and multiplied by a Jacobian transformation determined from the measured target position and orientation. The algorithm is compared with the extended Kalman filter for a typical target trajectory in a naval gun fire control system. The filter gains and the tracking errors for the proposed algorithm are nearly identical to the extended Kalman filter, while the computation requirements are reduced by a factor of four.  相似文献   

12.
A filter was developed for maintaining track on ballistic missiles whose drag profiles are unknown or deviate significantly from prior predictions. The filter employs an innovative form of a seven-state Kalman filter in which object drag is included as a state to be estimated. Using measurements of range, azimuth, and elevation, the filter can track endo- and exo-atmospheric targets on a wide variety of trajectories without requiring a priori tuning to account for variations in reentry angle, drag history, measurement signal-to-noise ratio, etc. The filter was designed to be implemented at the millimeter wave (MMW) radar (a high-range-resolution, narrow beamwidth, Ka-band radar) located at Kwajalein Missile Range (KMR) in the Marshall Islands. Extensive testing and comparisons using a high fidelity simulation showed the new filter to be robust to a wide variety of trajectories and substantially better than track filters presently used at KMR. The filter was coded to run efficiently in real time, installed at the MMW radar, and successfully used to track an intercontinental ballistic missile (ICBM) with varying drag characteristics through exo-atmospheric and reentry phases. The filter yielded a more accurate and responsive track than possible with the previously used filter on a similar trajectory  相似文献   

13.
Tracking accuracies for the radial component of motion are computed for a track-while-scan radar system which obtains position and rate data during the dwell time on a target These results will be of interest to persons developing trackers for pulse Doppler surveillance radars. The normalized accuracies, computed for a two state Kalman tracking filter with white noise maneuver capability, are shown to depend upon two parameters, r = 4?0/?aT2 and s = ?dT/?0. The symbols ?0 and ?d are the position and rate measurement accuracies, respectively, ?a is the standard deviation of the white noise maneuver process and T is the antenna scan time. The scalar tracking filter equations are derived and numerical results are presented. Lower steady state tracking errors plus the earlier attainment of steady state accuracies are the direct consequence of incorporating the rate measurements into the tracking filter.  相似文献   

14.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

15.
A new approach is described for combining range and Doppler data from multiple radar platforms to perform multi-target detection and tracking. In particular, azimuthal measurements are assumed to be either coarse or unavailable, so that multiple sensors are required to triangulate target tracks using range and Doppler measurements only. Increasing the number of sensors can cause data association by conventional means to become impractical due to combinatorial complexity, i.e., an exponential increase in the number of mappings between signatures and target models. When the azimuthal resolution is coarse, this problem will be exacerbated by the resulting overlap between signatures from multiple targets and clutter. In the new approach, the data association is performed probabilistically, using a variation of expectation-maximization (EM). Combinatorial complexity is avoided by performing an efficient optimization in the space of all target tracks and mappings between tracks and data. The full, multi-sensor, version of the algorithm is tested on simulated data. The results demonstrate that accurate tracks can be estimated by exploiting spatial diversity in the sensor locations. Also, as a proof-of-concept, a simplified, single-sensor range-only version of the algorithm is tested on experimental radar data acquired with a stretch radar receiver. These results are promising, and demonstrate robustness in the presence of nonhomogeneous clutter.  相似文献   

16.
Theory of Adaptive Radar   总被引:16,自引:0,他引:16  
This paper reviews the principles of adaptive radar in which both the spatial (antenna pattern) and temporal (Doppler filter) responses of the system are controlled adaptively. An adaptive system senses the angular-Doppler distribution of the external noise field and adjusts a set of radar parameters for maximum signal-to-interference ratio and optimum detection performance. A gradient technique for control of the radar array/filter weights is described and shown to generate weights which asymptotically approach optimum values. Simulation results illustrate the convergence rate of adaptive systems and the performance improvement which can be achieved.  相似文献   

17.
Adaptive array algorithms based on sample matrix inversion (SMI) require the availability of a secondary data set to “train” the adaptive filter. Numerous data-independent rules have been proposed for selecting this training data. However, such rules often perform poorly in inhomogeneous environments. We present data-adaptive methodologies for selecting the training data. The techniques, called “Power Selected Training” and “Power Selected Deemphasis”, use measurements of the interference environment to select training data. This work describes these algorithms and their performance on recorded radar data  相似文献   

18.
Heading and speed errors are analytically determined for noneumavering targets at the output of an x, y tracking filter which processes range and bearing measurements from a radar sensor in a track-while-scan (TWS) operation. These errors are shown to depend upon target range and speed, the angle between the radius and velocity vectors, sensor accuracies, and tracking filter parameters. eters. Depending upon the tracking filter implementation, these errors may also be a function of target bearing.  相似文献   

19.
The important tracking problem by radar of an incoming ballistic missile system, which contains uncertainty in modeling and noise in both dynamics and measurements, is studied. The classical extended Kalman filter (EKF) is no longer applicable to such an uncertain system, and so a new extended interval Kalman filter (EIKF) is developed for tracking the missile system. Computer simulation is presented to show the effectiveness of the EIKF algorithm for this uncertain and nonlinear ballistic missile tracking problem.  相似文献   

20.
介绍了自动着舰导引系统的工作原理及其滤波问题。为了抑制着舰导引系统跟踪雷达的高频噪声,并且克服常用的滤波器采用有限差分法求微分估计的弊端,采用两个二阶离散跟踪微分器串联起来,对含有噪声的雷达测量值进行滤波,并且提取其一二阶微分信息。结果表明,在仿真中使用白噪声模拟雷达噪声,跟踪微分器的滤波效果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号