首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
孙巍伟  魏志军  陶欢  王宁飞 《推进技术》2014,35(10):1426-1433
为了更好地了解热水火箭发动机的工作特性,建立了热水火箭发动机喷管流动的数值计算模型,并通过算例进行验证。通过对发动机喷管内部流场的研究,发现收敛段中压力首先降到初始温度对应的饱和压强,然后继续降低,并且在喉部的位置开始发生相变,从而使流动变为气液两相流,而且喷管出口处气相体积分数高达99%以上;由于变声速的原因,可以使两相流的流动在喉部之后达到超声速;把喷管的流动分为三个过程:单向流动过程、降压闪蒸过程和膨胀加速过程,与常规的化学能火箭发动机相比有类似性,但是由于闪蒸相变的存在,使其存在一定的复杂性。  相似文献   

2.
李宜敏  裴鸣 《推进技术》1988,9(5):1-7,76
本文综合现有的无喷管火箭发动机研究的成果,评述其优缺点.在此基础上,对无喷管发动机的工作特点和主要影响因素,如点火、燃烧、装药变形及两相流动等,进行了分析,以及讨论了无喷管发动机内弹道计算的有关问题.  相似文献   

3.
《推进技术》1996,17(5):58-58
火箭发动机设计参数对喷管效率的影响德国航空航天研究院用JANNF二维动能程序的改型给出了大型H。/O。火箭发动机喷管的流动计算结果,对火箭喷管进行了各种计算以研究火箭发动机特征设计参数对喷管损失的影响。喷管损失的范畴可分成扩散、摩擦和动能几类。此外,...  相似文献   

4.
热水火箭发动机实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为了解热水火箭发动机的内弹道性能,分别在不同初始压强、不同啧喉直径、不同加水量的情况下进行了实验.获得了不同情况下发动机工作的数据.通过数据的分析,总结提出了发动机工作的四个阶段:初始段、过渡段、近似线性段和拖尾段;得出初始压强、喷喉直径、加水量对发动机内弹道性能的影响规律,同时发现了在发动机工作工程中,其压强曲线都是经历一个先急剧下降后缓慢下降的过程,但是当初始压强较低时,压强曲线在过渡段会出现一个短暂的先升后降的波动.分析得出:热水火箭发动机的比冲受初始压强值的影响较大,而与喷喉直径或者加水质量无关;常规火箭发动机的推力计算公式并不适用于热水火箭发动机.  相似文献   

5.
刘和东  田辉 《推进技术》2018,39(4):792-801
为了分析塞式喷管结构对固液火箭发动机的性能影响,分别设计了使用塞式喷管和钟形喷管的固液火箭发动机。发动机喷管选取了三个不同的扩张比,对应高空和地面两个设计状态。通过数值仿真,预估了发动机的性能,并将使用塞式喷管结构和钟形喷管结构的两种固液火箭发动机进行了对比分析。结果表明:相对于钟形喷管结构,使用塞式喷管结构能够提高固液火箭发动机的燃烧效率和比冲效率,且最大分别提高了4.13%和3.37%;地面条件下,大扩张比的塞式喷管的仿真推力系数要比同扩张比的钟形喷管的仿真推力系数大2.69%,体现出塞式喷管的高度补偿效应;与钟形喷管内壁面温度相比,塞式喷管塞锥壁面的温度明显更低。  相似文献   

6.
固体火箭喷管中的烧蚀控制机制   总被引:1,自引:3,他引:1       下载免费PDF全文
何洪庆  周旭 《推进技术》1993,14(4):36-41
对碳基材料,以热化学烧蚀三方程模型为基础,在考虑粒子侵蚀,烧蚀与传热耦合的情况下,进行了全喷管烧蚀控制机制的研究,喷管中的烧蚀控制机制有化学动力学控制,扩散控制和双控制三种机制。通过研究,得到如下结论:1)对于由扩散控制和化学动力学控制确定的烧蚀率相差约20倍以上时,可以简化为按烧蚀率低的一种控制机制来计算;否则,应当按既考虑扩散控制,又考虑化学动力学控制的双控制机制来计算。2)在固体火箭喷管中,大体上喉部和扩张段的烧蚀是化学动力学控制的,而收敛段的烧蚀是由扩散控制的。3)由于在收敛段由两种机制控制的烧蚀率相差较小,因此,在收敛段的烧蚀率应当按双控制机制来计算。喉部和扩张段的烧蚀可简化为动力学控制机制。  相似文献   

7.
为了更好地了解热水火箭发动机的工作特性,建立了热水火箭发动机内流场的数值计算模型,对发动机非稳态的工作过程进行模拟,并与实验数据对比进行验证。通过对发动机工作过程的研究,发现在发动机工作过程中,喷管之前相变较缓慢,而在喷管中相变比较剧烈,从而使得喷管部分的气体体积分数梯度较大,越靠近出口,气体体积分数越大,出口气体体积分数高达90%以上,其温度越低。发动机内部压力首先急剧降到初始温度对应的饱和压强,然后缓慢降低。把热水火箭发动机的工作过程分为三个阶段:初始段、中间段和拖尾段。发动机的总冲主要集中在中间段,约占总比冲的70%以上。  相似文献   

8.
张铭玉 《推进技术》1989,10(1):14-18,42,72
根据火箭发动机的推力公式及空气动力学有关理论,导出在小斜切角喷管内气体流动的特性、推力的变化规律,并给出喷管的设计方法.  相似文献   

9.
固体火箭发动机喷管喉衬应力场的理论预估   总被引:2,自引:0,他引:2       下载免费PDF全文
孙菊芳 《推进技术》1989,10(5):19-24,72
本文对固体火箭发动机复合结构喷管石墨喉衬在燃气压力和变温载荷作用下的瞬态应力场,采用有限元法进行了分析、计算.提供了该方法的力学模型与基本方法和算例.计算中考虑了材料的方向性.为了节约计算机内存,整体刚度矩阵(K)采用了变带宽压缩存贮法.为了验证理论计算结果的准确性,还与实验结果进行了对比,两者基本符合.  相似文献   

10.
以某固体火箭发动机喷管为例,研究其旋转情况下的流动、传热及热结构响应性能。利用雷诺应力湍流模型,结合增强型壁面函数,求解N-S方程。以喷管内壁面温度分布为边界条件,求解二维轴对称瞬态热传导方程。将瞬态温度场按时间步长加载,进行瞬态静力学分析,得到不同转速下的流场、温度场及应力场。结果表明,喷管在旋转情况下,喷管内壁面尤其是喉部及扩张段温度分布在转速为100 r/min及600 r/min左右时变化剧烈;旋转内流场与喷管结构的耦合作用加剧了喷管的传热,尤其是喉衬的烧蚀,特征点温度值随转速增大而升高;最大热应力位于喷管最外层尾端,整体热应力在转速低于100 r/min时得到释放,随着转速的不断增大,喷管整体最大热应力及扩张段特征点应力随之增大,而喉衬特征点由于旋转导致了温度梯度降低,其应力值随之减小。  相似文献   

11.
为了考察固体火箭发动机塞式喷管的性能,设计了一套单元内喷管数为16、面积比为25的环簇式固体塞式喷管和一对比用钟型喷管,采用数值模拟方法预估了其推力性能.对塞式喷管进行了地面热态试验,测定了其推力性能.结果表明,环簇式塞式喷管地面燃气流动现象和推力性能的数值模拟结果与试验结果吻合.塞式喷管在地面上的推力效率达92.6%,比同面积比和长度的钟型喷管高9.1%,具有明显的高度补偿效应;但高空效率比用钟型喷管效率降低5.8%.   相似文献   

12.
固体火箭发动机喷管气固两相流动的数值模拟   总被引:1,自引:6,他引:1  
对颗粒相采用颗粒轨道模型,气相求解可压缩N-S方程组,计算方法采用显式Runge-Kutta时间推进法与有总变差衰减(TVD)性质的高精度MUSCL-Roe格式;自主开发了曲线坐标系下二维轴对称可压缩N-S方程组的解算器Solve2D,研究了固体火箭发动机喷管中颗粒相对流场的影响以及不同尺寸颗粒运动规律.结果表明:颗粒相对流场的影响主要表现在喷管喉部以及扩张段,和单相流场相比,沿轴线马赫数减小,且颗粒尺寸越小减少得越多;沿轴线气相温度升高,且颗粒尺寸越小温度升高越多;颗粒尺寸越小,无粒子区越小;颗粒越大与收缩段壁面碰撞越剧烈,无粒子区越大.   相似文献   

13.
为了研究火箭发动机(SRM)斜切喷管的两相流动特性,采用气体-颗粒相双流体模型,并结合多区域混合网格技术,对发动机斜切喷管内气相与颗粒相的相互作用规律进行研究,探索颗粒直径与颗粒质量分数变化对发动机喷管气固两相流动特性的影响。结果表明:固体颗粒相的存在,对发动机斜切喷管的流场结构产生重要影响,导致喷管轴线附近存在一个燃气流动速度较低,温度较高的区域。同时,喷管壁面附近存在无粒子区,随着颗粒直径的增加,无粒子区域的范围逐渐扩大。并且,颗粒直径越大,其运动速度越小,在喷管内的滞留时间越长。颗粒直径与质量分数的变化同样会影响发动机喷管的流场结构,随着颗粒直径的增加,发动机喷管轴线处气相马赫数先减小后增大,而燃气温度则先增大后减小;发动机推力的变化趋势与马赫数变化趋势相同,但两者并不同时达到极值点。颗粒相的质量分数越大,沿喷管轴线方向的气相马赫数和发动机推力越小,喷管两相流损失越大。  相似文献   

14.
固体火箭发动机喷管阻尼特性的数值仿真   总被引:2,自引:0,他引:2  
为了探究影响固体火箭发动机喷管阻尼特性的关键因素,基于典型柱状装药固体火箭发动机二维简化模型,利用脉冲衰减法,开展喷管阻尼特性数值仿真计算,研究了喉通比和燃烧室长度对喷管阻尼常数的影响规律,结果发现数值模拟结果与经验公式理论预估结果有较好的一致性,证实了该数值方法的有效性;在此基础上,进一步探讨了无法由经验公式直接获知的诸如喷管收敛半角以及收敛型面对喷管阻尼常数的影响规律,结果表明:收敛半角对喷管阻尼常数有很大的影响,在设计范围内,较小的收敛角有益于提高喷管阻尼特性;收敛段型面对喷管阻尼也有一定的影响,凸型型面阻尼特性优于锥型型面,锥形型面优于凹形型面.   相似文献   

15.
利用二维轴对称N-S方程对选用氧化亚氮/丁羟基燃料推进剂的固液混合火箭发动机的喷管两相流进行了计算.计算采用MacCormack时间推进预报校正二步格式,采用了Baldwin-Lomax代数湍流模型和两相平衡流模型.计算了三种氧燃比下4个不同喷管的喷管流场参数,并计算了喷管性能,通过比较两相流和气相流的计算结果,分析了不同氧燃比和喷管形状对喷管性能的影响,认为固液火箭发动机的性能主要受氧燃比的影响,为固液混合火箭发动机的设计提供了依据.   相似文献   

16.
燃气喷射推力矢量喷管气固两相流数值模拟   总被引:2,自引:0,他引:2  
利用Euler-Lagrangian方法模拟了固体火箭发动机燃气喷射推力矢量喷管气固两相内流场,研究了固体颗粒对喷管推力矢量性能的影响.气相采用Roe格式和MUSCL (monotone upstream-centred schemes for conservation laws)插值进行空间2阶迎风离散,时间推进采用隐式时间格式;固体颗粒相采用随机轨道模型计算颗粒轨迹,并与气相进行双向耦合.结果表明:固体颗粒的存在使弓形激波强度增强,但降低了推力矢量角和推力系数;颗粒质量分数相同时,粒径越大,推力矢量角和推力系数越大;颗粒直径相同时,颗粒质量分数越大,推力矢量角和推力系数越小.   相似文献   

17.
为了揭示含潜入喷管的固体火箭发动机尾部流动特征,按照几何相近和气动相似原则设计了通道为矩形的二维冷流实验模型,利用相位多普勒粒子分析仪(PDPA)对燃烧室尾部气流的时均速度和湍流脉动速度进行了测量。实验结果表明气流在潜入喷管入口上发生分离,再附点位于喷管前端部外侧,背部空腔内形成一个较为稳定的回流区,流场的轴向和横向湍流强度都比较大。  相似文献   

18.
固体火箭发动机碳基材料喷管机械侵蚀特性   总被引:1,自引:2,他引:1  
为研究碳基材料喷管的机械侵蚀特性,基于两相流理论和经验公式,考虑液滴的蒸发与反应,建立了二维轴对称碳基材料喷管机械侵蚀计算模型.针对15-lb BATES发动机喷管进行了机械侵蚀计算,研究了液滴轨迹、机械侵蚀情况的分布规律,以及推进剂中Al质量分数和燃烧室压强对机械侵蚀的影响.结果表明:机械侵蚀率计算最大值为55μm/s,在实验结果范围内.Al/Al2O3混合液滴是机械侵蚀的主要因素,Al液滴由于蒸发氧化而不对壁面造成碰撞.机械侵蚀发生在喷管收敛段,峰值位于喉部上游入口处,喉部和扩张段无机械侵蚀现象.推进剂中Al质量分数增加对机械侵蚀率无显著规律性影响.机械侵蚀率随燃烧室压强的增加呈超线性增长.   相似文献   

19.
近地点变轨发动机高空喷管性能预示研究   总被引:3,自引:0,他引:3       下载免费PDF全文
对长征-2E火箭近地点变轨发动机EPKM高空喷管的地面性能和高空性能进行了预示。在喷管跨声速区,气相采用显式MacCormack差分格式、颗粒相采用特征线法,而在喷管超声速区采用特征线法,数值求解轴对称二维无粘两相流动模型。结合喷管内的气流分离准则预测发动机地面工作时的性能,同时根据地面试验数据外推发动机的高空性能,与实测性能数据比较,平均推力相对误差约为5.6%和1.5%左右;而直接对发动机高空工作时的满流状态喷管进行数值模拟所得的发动机平均推力与实测性能数据比较相对误差约为1.7%左右。研究表明,所采用的流动模型、气流分离准则和数值方法对高空喷管不同工况下的性能进行工程预示是有效的。  相似文献   

20.
双脉冲固体发动机喷管传热烧蚀特性   总被引:1,自引:2,他引:1  
为了研究双脉冲固体发动机喷管的传热烧蚀特性,由燃烧室压强及发动机推力试验曲线得到了喷管喉径的瞬变值,由FLUENT流体计算软件进行流固耦合传热烧蚀计算,得到了喷管瞬态温度分布、绝热材料热解炭化情况及碳/碳(C/C)喉衬瞬态烧蚀率,分析了脉冲工作过程及脉冲间隔时间对喷管传热烧蚀的影响.计算结果表明,脉冲工作过程中,绝热材料热解线、炭化线向材料内部扩展,喉衬烧蚀率不断增大;脉冲间隔时间内,喷管材料内部的导热使各处温差减小,温度趋于一致;第一脉冲的传热烧蚀与脉冲间隔的材料导热使第二脉冲工作时喉衬整体热沉小、内壁初始温度高、表面粗糙度大,从而导致较高烧蚀率.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号