首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic flux region within a complex of active regions, Hale No. 16918. This analysis was done as a part of a continuing study of the circumstances associated with flares in Hale Region 16918, which was designated as an FBS target during the interval 18 – 23 June 1980. We studied the initiation and development of both major and minor flares in Hα images in relation to the identified potential flare sites at the boundaries of the growing flux region and to the general development of the new flux. This study lead to our recognition of a spectrum of possible relationships of growing flux regions to flares as follows: (1) intimate interaction with adjacent old flux — flare sites centered at new/old flux boundary, (2) forced or “intimidated” interaction in which new flux pushes old field having lower flux density towards a neighboring old polarity inversion line where a flare then takes place, (3) “influential” interaction — magnetic lines of force over an old polarity inversion line, typically containing a filament, reconnect to the new emerging flux; a flare occurs with erupting filament when the magnetic field overlying the filament becomes too weak to prevent its eruption, (4) inconsequential interaction — new flux region is too small or has wrong orientation for creating flare conditions, (5) incidental — flare occurs without any significant relationship to new flux regions.  相似文献   

2.
Coordinated observations using space and ground-based instruments were made of active region complex #2522/2530, 24–30 June, 1980. The 10 largest flares from these regions were of importance M1-M6 in X-rays, and all were observed from satellites, except for one observed from a balloon. Several kinds of buildup signature have been found in the tens of minutes before these flares. Among these signatures are the following: 1) Relative faintness in X-ray lines of the pre-flare pixels, 2) X-ray (5–15 keV) “flashes” at points displaced by 1′–2′ from the flare site, 3) Rising filaments seen in Hα and Ultraviolet 4) Microwave intensification, polarization increase and polarization flip 5) Coronal disturbances above limb flares at or before the impulsive phase.  相似文献   

3.
We study the extremely complex active region (AR) NOAA 10314, that was observed from March 13–19, 2003. This AR was the source of several energetic events, among them two major (X class) flares, along a few days. We follow the evolution of this AR since the very first stages of its emergence. From the photospheric evolution of the magnetic polarities observed with SOHO/MDI we infer the morphology of the flux tube that originates the AR. Using a computation technique that combines Local Correlation Tracking with magnetic induction constrains, we compute the rate of magnetic helicity injection at the photosphere during the observed evolution. From our results we conclude that the AR originated by the emergence of a severely deformed magnetic flux tube having a dominantly positive magnetic helicity.  相似文献   

4.
We discuss a class of microwave flares whose source regions exhibit a distinctive spatial configuration; the primaryenergy release in these flares results from the interaction between emerging magnetic flux and an existing overlying region. Such events typically exhibit radio, X-ray and EUV emission at the main flare site (the site of interaction) and in addition radio emission at a remote site up to 1 × 105 km away in another active region. We have identified and studied more than a dozen microwave flares in this class, in order to arrive at some general conclusions on reconnection and energy release in such solar flares. Typically, these flares show a gradual rise showing many subsidiary peaks in both radio and hard X-ray light curves with a quasi-oscillatory nature with periods of 5–6 seconds, a bright compact X-ray & EUV emitting loop in the main flare source, a delay of the radio emission from the remote source relative to the main X-ray-emitting source. The magnetic field in the main flare site changes sharply at the time of the flare, and the remote site appears to be magnetically connected to the main flare site.  相似文献   

5.
17 emerging magnetic flux regions with arch filaments related to new sunspots were identified in Hale Active Region No. 16918 during the 7 day interval from 16–22 June. Most of the new flux regions were clustered around the filament channel between the old opposite polarity fields as were most of the flares. The two largest regions of new magnetic flux and a few of the smaller flux regions developed very near the end points of filaments. This suggests that the emergence of flux in existing active regions might be non-random in position along a filament channel as well as in distance from a filament channel.We have analyzed the positions of 88 flares to date during about half of each day. We find that slightly more than half (50%) of the flares, irrespective of their size, are centered within the new flux regions. About 1/5 (20%) were centered on the border between the new flux and the adjacent older magnetic field. Less than 1/3 occurred outside of the newly emerging flux regions but in many cases were very close to the newly emerging flux. We conclude that at least 2/3 of the flares are intimately related to the emerging flux regions while the remaining 1/3 might be either indirectly related or unrelated to the emerging flux.  相似文献   

6.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

7.
We studied a set of 74 CMEs, with shedding the light on the halo-CMEs (HCMEs), that are associated with decametric – hectometric (DH) type-II radio bursts (1–16?MHz) and solar flares during the period 2008–2014. The events were classified into 3 groups (disk, intermediate, and limb events) based on their longitudinal distribution.We found that the events are mostly distributed around 15.32° and 15.97° at the northern and southern solar hemispheres, respectively. We found that there is a clear dependence between the longitude and the CME’s width, speed, acceleration, mass, and kinetic energy. For the CMEs’ widths, most of the events were HCMEs (~62%), while the partial HCMEs comprised ~35% and the rest of events were CMEs with widths less than 120°. For the CMEs’ speeds, masses, and kinetic energies, the mean values showed a direct proportionality with the longitude, in which the limb events had the highest speeds, the largest masses, and the highest kinetic energies. The mean peak flux of the solar flares for different longitudes was comparable, but the disk flares were more energetic. The intermediate flares were considered as gradual flares since they tended to last longer, while the limb flares were considered as impulsive flares since they tended to last shorter.A weak correlation (R?=?0.32) between the kinetic energy of the CMEs and the duration of the associated flares has been noticed, while there was a good correlation (R?=?0.76) between the kinetic energy of the CMEs and the peak flux of the associated flares. We found a fair correlation (R?=?0.58) between the kinetic energy of the CMEs and the duration of the associated DH type-II radio bursts.  相似文献   

8.
对澳大利亚Culgoora天文台射电频谱仪在太阳活动第23周峰年期间记录到的米波Ⅲ型爆发(20~420 MHz),与日冕物质抛射(CME)、Hα耀斑及相关事件进行了统计分析,发现米波Ⅲ型爆发与CME的关系没有Ⅱ、Ⅳ型爆发与CME的关系密切;米波Ⅲ型爆发发生的时间在CME之前25~30 min最多;72%的CME事件伴随长寿命的Hα耀斑.从这些观测特征出发,对米波Ⅲ型爆发、CME和Hα耀斑进行了定性的解释.   相似文献   

9.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

10.
Solar flares are explosive events in the solar corona, representing fast conversion of magnetic energy into thermal and kinetic energy, and hence radiation, due to magnetic reconnection. Modelling is essential for understanding and predicting these events. However, self-consistent modelling is extremely difficult due to the vast spatial and temporal scale separation between processes involving thermal plasma (normally considered using magnetohydrodynamic (MHD) approach) and non-thermal plasma (requiring a kinetic approach). In this mini-review we consider different approaches aimed at bridging the gap between fluid and kinetic modelling of solar flares. Two types of approaches are discussed: combined MHD/test-particle (MHDTP) models, which can be used for modelling the flaring corona with relatively small numbers of energetic particles, and hybrid fluid-kinetic methods, which can be used for modelling stronger events with higher numbers of energetic particles. Two specific examples are discussed in more detail: MHDTP models of magnetic reconnection and particle acceleration in kink-unstable twisted coronal loops, and a novel reduced-kinetic model of particle transport in converging magnetic fields.  相似文献   

11.
The homologous flares observed in the same region of a spotgroup testify the existence and the duration of a permanent instability. However, they also attest that the general magnetic configuration is not destroyed by these flares and that it changes slowly up to the death of the site.The study of every flaring sites where more than ten flares occur has been performed in Meudon for the 1974–1980 period.One hundred and sixty-six sites have been analysed from the rotation where the A.R. is observed up to five rotations ahead. The basis of the study are the “Synoptic Maps”. A relation is found between the presence of crossing of “filament-phantom” corridors and the location of the homologous flare sites.1  相似文献   

12.
观测资料分析表明,AR5395活动区演化具有周期性的特征,软X射线峰值流量F变化周期为24.3小时,X射线耀斑出现率Nx,具有12.2小时的周期性,活动区黑子群面积Sx的变化呈现24.4小时的周期。这3个周期变化量的相位关系表明:(1)X级耀斑往往发生在黑子面积减小的位相;(2)在1个周期内,黑子群面积达到最大值约需16小时,恢复到大耀斑前水平约需8小时;(3)在X级大耀斑前约12小时,小级别耀斑出现率达到峰值。分析显示,AR5395活动区似乎工作于大耀斑能量储存—释放—储存周期性循环的极限状态之中。   相似文献   

13.
通过Cluster卫星在2005年3月16日观测到的一个准平行激波观测事例,研究了准平行激波上游低频等离子体波动与能量离子之间的关系.卫星观测结果表明,在准平行激波上游,离子微分能通量受到了非线性波动的调制.在磁场强度较小区域,离子微分能通量较高.产生这种现象的可能原因是准平行激波上游的非线性波动可以捕获离子,被捕获的离子在波动中来回弹跳并被电场加速,从而导致磁场强度较小区域离子微分能通量较高.这一观测结果与已有的混合模拟结果相吻合.   相似文献   

14.
We discuss some recent observations of red dwarf flare stars. When observed over periods of about 8 hours, each of 4 flare star systems displayed at least one major flare at 20 cm. Quiescent emission at 6 cm was seen from UV Ceti and EQ Peg A, but flares were much less frequent at 6 cm than at 20 cm. We also summarize earlier observations of quiescent emission from UV Ceti. Observations of highly polarized flares with brightness temperatures in excess of 1010 K appear to be common on red dwarf stars. We have also found narrowband flares which strengthen the argument that a coheren emission mechanism is involved in these flares. One of those narrowband flares allows us to place severe constraints on conditions in the flare source, and if the flare is cyclotron maser emission it seems unlikely that magnetic reconnection is involved in the flare.  相似文献   

15.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

16.
We present observational results and their physical implications garnered from the deliberations of the FBS Magnetic Shear Study Group on magnetic field shear in relation to flares. The observed character of magnetic shear and its involvement in the buildup and release of flare energy are reviewed and illustrated with emphasis on recent results from the Marshall Space Flight Center vector magnetograph. It is pointed out that the magnetic field in active regions can become sheared by several processes, including shear flow in the photosphere, flux emergence, magnetic reconnection, and flux submergence. Modeling studies of the buildup of stored magnetic energy by shearing are reported which show ample energy storage for flares. Observational evidence is presented that flares are triggered when the field shear reaches a critical degree, in qualitative agreement with some theoretical analyses of sheared force-free fields. Finally, a scenario is outlined for the class of flares resulting from large-scale magnetic shear; the overall instability driving the energy release results from positive feedback between reconnection and eruption of the sheared field.  相似文献   

17.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

18.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

19.
CMEs are due to physical phenomena that drive both, eruptions and flares in active regions. Eruptions/CMEs must be driven from initially force-free current-carrying magnetic field. Twisted flux ropes, sigmoids, current lanes and pattern in photospheric current maps show a clear evidence of currents parallel to the magnetic field. Eruptions occur starting from equilibria which have reached some instability threshold. Revisiting several data sets of CME observations we identified different mechanisms leading to this unstable state from a force free field. Boundary motions related to magnetic flux emergence and shearing favor the increase of coronal currents leading to the large flares of November 2003. On the other hand, we demonstrated by numerical simulations that magnetic flux emergence is not a sufficient condition for eruptions. Filament eruptions are interpreted either by a torus instability for an event occurring during the minimum of solar activity either by the diffusion of the magnetic flux reducing the tension of the restraining arcade. We concluded that CME models (tether cutting, break out, loss of equilibrium models) are based on these basic mechanisms for the onset of CMEs.  相似文献   

20.
CME是非重现性地磁暴的诱因,通过对太阳耀斑爆发活动的特征与可能引起地磁活动的CME进行统计分析,发现太阳耀斑的强度、位置、持续时间以及耀斑所伴随的太阳质子事件和行星际高能质子通量的增长与CME的特征及可能产生的地磁扰动有着密切的关系.在对数据分析的基础上,建立了基于人工神经网络的预报模式,对太阳耀斑爆发活动所引起的地磁扰动的发生及Ap指数进行了预报,取得了较好的结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号