首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic flux region within a complex of active regions, Hale No. 16918. This analysis was done as a part of a continuing study of the circumstances associated with flares in Hale Region 16918, which was designated as an FBS target during the interval 18 – 23 June 1980. We studied the initiation and development of both major and minor flares in Hα images in relation to the identified potential flare sites at the boundaries of the growing flux region and to the general development of the new flux. This study lead to our recognition of a spectrum of possible relationships of growing flux regions to flares as follows: (1) intimate interaction with adjacent old flux — flare sites centered at new/old flux boundary, (2) forced or “intimidated” interaction in which new flux pushes old field having lower flux density towards a neighboring old polarity inversion line where a flare then takes place, (3) “influential” interaction — magnetic lines of force over an old polarity inversion line, typically containing a filament, reconnect to the new emerging flux; a flare occurs with erupting filament when the magnetic field overlying the filament becomes too weak to prevent its eruption, (4) inconsequential interaction — new flux region is too small or has wrong orientation for creating flare conditions, (5) incidental — flare occurs without any significant relationship to new flux regions.  相似文献   

2.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

3.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

4.
太阳耀斑与太阳质子事件的发生通常与太阳活动区存在非常密切的关系, 对这种关系的深入分析有助于太阳耀斑和太阳质子事件预报模型的建立. 本文利用主成分分析(Principal Component Analysis, PCA)方法对1997-2010年太阳质子事件所在活动区的主要参量进行分析, 选取的参量包括黑子磁分类、 McIntosh分类、太阳黑子群面积、10.7 cm射电流量、耀斑指数、质子耀斑位置和软X射线耀斑强度. 结果得到81个太阳活动主成分得分值排序(得分值代表每个事件的强弱), 与太阳质子事件峰值流量、太阳黑子年均值以及10.7 cm射电流量年均值的对比显示相似度非常高, 表明主成分得分值一定程度上可以反映太阳活动的强弱规律.   相似文献   

5.
We discuss a class of microwave flares whose source regions exhibit a distinctive spatial configuration; the primaryenergy release in these flares results from the interaction between emerging magnetic flux and an existing overlying region. Such events typically exhibit radio, X-ray and EUV emission at the main flare site (the site of interaction) and in addition radio emission at a remote site up to 1 × 105 km away in another active region. We have identified and studied more than a dozen microwave flares in this class, in order to arrive at some general conclusions on reconnection and energy release in such solar flares. Typically, these flares show a gradual rise showing many subsidiary peaks in both radio and hard X-ray light curves with a quasi-oscillatory nature with periods of 5–6 seconds, a bright compact X-ray & EUV emitting loop in the main flare source, a delay of the radio emission from the remote source relative to the main X-ray-emitting source. The magnetic field in the main flare site changes sharply at the time of the flare, and the remote site appears to be magnetically connected to the main flare site.  相似文献   

6.
Active region (AR) NOAA 11476 produced a series of confined plasma ejections, mostly accompanied by flares of X-ray class M, from 08 to 10 May 2012. The structure and evolution of the confined ejections resemble that of EUV surges; however, their origin is associated to the destabilization and eruption of a mini-filament, which lay along the photospheric inversion line (PIL) of a large rotating bipole. Our analysis indicate that the bipole rotation and flux cancellation along the PIL have a main role in destabilizing the structure and triggering the ejections. The observed bipole emerged within the main following AR polarity. Previous studies have analyzed and discussed in detail two events of this series in which the mini-filament erupted as a whole, one at 12:23 UT on 09 May and the other at 04:18 UT on 10 May. In this article we present the observations of the confined eruption and M4.1 flare on 09 May 2012 at 21:01 UT (SOL2012-05-09T21:01:00) and the previous activity in which the mini-filament was involved. For the analysis we use data in multiple wavelengths (UV, EUV, X-rays, and magnetograms) from space instruments. In this particular case, the mini-filament is seen to erupt in two different sections. The northern section erupted accompanied by a C1.6 flare and the southern section did it in association with the M4.1 flare. The global structure and direction of both confined ejections and the location of a far flare kernel, to where the plasma is seen to flow, suggest that both ejections and flares follow a similar underlying mechanism.  相似文献   

7.
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hαα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hαα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195  Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux.  相似文献   

8.
The current sheet (CS) creation before a flare in the vicinity of a singular line above the active region NOAA 10365 is shown in numerical experiments. Such a way the possibility of energy accumulation for a solar flare is demonstrated. These data and results of observation confirm the electrodynamical solar flare model that explains solar flares and CME appearance during CS disruption. The model explains also all phenomena observed in flares. For correct reproduction of the real boundary conditions the magnetic flux between spots should be taken into account. The full system of 3D MHD equations are solved using the PERESVET code. For setting the boundary conditions the method of photospheric magnetic maps is used. Such a method permits to take into account all evolution of photospherical magnetic field during several days before the flare.  相似文献   

9.
It is often noticed that the occurrence rate of Coronal Mass Ejections (CMEs) increases with increase in flare duration where peak flux too increase. However, there is no complete association between the duration and peak flux. Distinct characteristics have been reported for active regions (ARs) where flares and CMEs occur in contrast to ARs where flares alone occur. It is observed that peak flux of flares is higher when associated with CMEs compared to peak flux of flares with which CMEs are not associated. In other words, it is likely that flare duration and peak flux are independently affected by distinct active region dynamics. Hence, we examine the relative ability of flare duration and peak flux in enhancing the CME productivity. We report that CME productivity is distinctly higher in association with the enhancement of flare peak flux in comparison to corresponding enhancement of flare duration.  相似文献   

10.
1986年2月太阳的高活动I活动区4711的演化和特征   总被引:1,自引:1,他引:0  
本文使用太阳黑子、磁场、Hα色球、10.7cm射电及软X射线流量等观测资料,对太阳活动谷期的高活动区4711(SESC编号)从光球、色球和日冕三个方面做了综述.指出该活动区演化过程的特征是:(1)黑子群在主要发展阶段呈一个紧密的结构复杂的强磁区;(2)两次大的太阳爆发均发生在黑子群面积衰减阶段的初期;(3)黑子群的转动可能是活动区日冕加热和耀斑活动的主要供能机制;(4)色球暗条的频繁活动是爆发的先兆;(5) 10.7cm射电辐射和软X射线辐射的逐日流量有彼此不重合的双峰.   相似文献   

11.
提出了一个基于长短期记忆神经网络的耀斑预报模型,利用过去24 h太阳活动区的磁场变化时序构建样本,通过长短期记忆神经网络对磁场特征时序演化进行分析,预报未来48 h内是否发生≥M级别耀斑事件。使用的数据集为2010年5月到2017年5月所有活动区样本,选取了SDO/HMI SHARP的10个磁场特征参量。在建模过程中通过XGBoost方法选取权重、增益率和覆盖率均较高的6个特征参量作为输入参数。通过测试对比,模型的虚报率和准确率与传统机器学习模型相近,报准率和临界成功指数分别为0.7483和0.7402,优于传统机器学习模型。模型总体效果优于传统机器学习模型。   相似文献   

12.
A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, we find that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.  相似文献   

13.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

14.
本文以1972年10月的太阳活动区McMath 12094为范例, 研究了活动区磁场扭绞与耀斑产率的关系.先在常α无力场模型假定下, 以观测到的活动区光球磁场为边值, 对活动区在日面中心附近4天(10月28—31日), 推算出代表活动区磁场平均扭绞程度的无力因子α, 从而外推出活动区在这4天的三维磁力线形态.然后以这些资料为基础, 进一步讨论了活动区磁场演化特征, 磁场扭绞与耀斑产率的关系, 并且近似用单极场模型估算了通过活动区前导大黑子A的电流、电流密度以及因大黑子逆时针旋转造成磁场扭绞所贮存的能量.本文主要结论为:(1)活动区McMath 12094从10月27日起保持较强扭绞, 10月30日达到极大, 10月31日后扭绞减弱.活动区磁场扭绞的主要原因是光球中的磁流体力学作用所导致的前导大黑子A的逆时针旋转。(2)代表活动区磁场平均扭绞程度的无力因子α与活动区耀斑产率同步变化, 表明活动区磁场扭绞与耀斑产率成正相关.(3)通过活动区前导大黑子A的本影电流为4.3—6.6×1012A, 因扭绞产生的自由能贮存为0.44—1.11×1032erg.活动区中的电流密度达到0.96—1.47×10A·m-2.这样高的电流密度可能是该活动区高耀斑产率的重要原因.   相似文献   

15.
Observational studies of the pre-cursor phase of solar flares have shown that there are many and varied signatures that may or may not indicate the probable onset of a flare. Combining data from Yohkoh, SOHO and TRACE and more recent observations from RHESSI, SOHO and TRACE we, investigate the relationships between the different manifestations of pre-flare behaviour in two solar flares with a view to determining how they are related to the subsequent flare energy release. We find that in one case the preflare activity seems strongly related to the subsequent flare and probably represents a build-up of energy in the active region prior to flare onset. The second case we find to be less clear cut suggesting that significant further work remains to be done in order to determine which pre-flare signatures are most useful in indicating the build-up to flare onset.  相似文献   

16.
Changes in the structure of the sunspot group and its magnetic field are studied in Hale Region 17644 (May 1981) in connection with the May 16 3B/X1 flare. The characteristic changes, also found in HR 16850 (May 1980) and HR 17098 (September 1980), are the following: Rapid motions of umbrae of opposite polarity in the vicinity of the magnetic zero line, parallel to this line, but in opposite direction. Appearence of new small spots before the flare, leading to a more complicated field structure. Simplification of the magnetic structure after the flare in some days, i.e. decrease of spot areas in the affected territory and the straightening of the magnetic zero line.  相似文献   

17.
本文利用云南天文台耀斑Hα巡视观测、活动区白光照相及速度场资料,结合SMM的X射线资料和北京天文台的射电观测资料,对1980年7月14日日面3B级大耀斑进行了综合研究。对照耀斑过程的磁流浮现(EMF)模型,我们分析了活动区的形态变化特征,估算了耀斑释放的磁能、耀斑过程的特征时间及耀斑爆发时加速的电子总数和加速电子的平均能量。结果表明:(1)耀斑过程的EMF模型与观测结果基本符合,可以认为EMF模型能够较好地说明耀斑的物理过程。(2)根据对速度场资料及耀斑产生位置的分析,初步认为电流片可能位于速度中性线与磁中性线的交点处及其附近,或速度中性线与暗条的交点处及其附近[3]。(3)观测和计算表明,硬x射线爆是由电流片中加速的高能非热电子所产生,而软X射线爆则由耀斑区的高温等离子体的热轫致辐射所产生。   相似文献   

18.
The support vector machine (SVM) combined with K-nearest neighbors (KNN), called the SVM-KNN method, is new classing algorithm that take the advantages of the SVM and KNN. This method is applied to the forecasting models for solar flares and proton events. For the solar flare forecasting model, the sunspot area, the sunspot magnetic class, and the McIntosh class of sunspot group and 10 cm solar radio flux are chosen as inputs; for the solar proton event forecasting model, the inputs include the longitude of active regions, the flux of soft X-ray, and those for the solar flare forecasting model. Detailed tests are implemented for both of the proposed forecasting models, in which the SVM-KNN and the SVM methods are compared. The testing results demonstrate that the SVM-KNN method provide a higher forecasting accuracy in contrast to the SVM. It also gives an increased rate of ‘Low’ prediction at the same time. The ‘Low’ prediction means occurrence of solar flares or proton events with predictions of non-occurrence. This method show promise for forecasting models of solar flare and proton events.  相似文献   

19.
Yohkoh X-ray images, multifrequency two-dimentional observations of the Nancay Radioheliograph, Kitt Peak and Mees magnetograms provide a unique set of data with which to study a C4.7 long-duration flare that was observed close to the equator (S07, W11) on 25 Oct. 1994 at 09:49 UT. Linear force-free field extrapolations indicate a very high degree of non-potentiality in the active region. The X-ray flare started with the expansion of spectacular twisted loops. Fifteen minutes after the flare onset sporadic radio (type III) bursts were observed spreading over an area of almost 1/3 of the solar disc and two remote X-ray brightenings appeared over quiet regions of opposite magnetic polarity located in on opposite hemispheres of the Sun. In the close vicinity of these remote brightenings two coronal holes formed. The timing and location of these events combined with the overall magnetic configuration provide evidence for a large-scale magnetic reconnection occurring between the expanding twisted loops and the overlying huge loops which inter-connect quiet solar regions.  相似文献   

20.
The amount of emergence and submergence of magnetized plasma and the horizontal motion of the footpoints of flux tubes might be crucial for the dynamics of the solar atmosphere. Although the rate of flux emergence and submergence can be observationally determined near the polarity inversion line (Chae et al., 2004), the same is not true for regions away from the PIL. Also, the horizontal motions cannot be directly measured in the solar photosphere. In this sense, the evolution of the photospheric magnetic field provides valuable information which can be used to estimate photospheric plasma flows since magnetic field and plasma are closely associated (frozen-in-condition). We used three methods to estimate the photospheric plasma motion from magnetic field observations. The methods were applied to photospheric vector magnetic field data of active region NOAA 9077, observed by the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China before and after the ‘Bastille Day’ flare on July 13th and 14th, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号