首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
17 emerging magnetic flux regions with arch filaments related to new sunspots were identified in Hale Active Region No. 16918 during the 7 day interval from 16–22 June. Most of the new flux regions were clustered around the filament channel between the old opposite polarity fields as were most of the flares. The two largest regions of new magnetic flux and a few of the smaller flux regions developed very near the end points of filaments. This suggests that the emergence of flux in existing active regions might be non-random in position along a filament channel as well as in distance from a filament channel.We have analyzed the positions of 88 flares to date during about half of each day. We find that slightly more than half (50%) of the flares, irrespective of their size, are centered within the new flux regions. About 1/5 (20%) were centered on the border between the new flux and the adjacent older magnetic field. Less than 1/3 occurred outside of the newly emerging flux regions but in many cases were very close to the newly emerging flux. We conclude that at least 2/3 of the flares are intimately related to the emerging flux regions while the remaining 1/3 might be either indirectly related or unrelated to the emerging flux.  相似文献   

2.
A multidisciplinary study of this solar-interplanetary event is summarized by two main points: this flare was an incident in a process that began days before the flare, and continued after the flare; and the chain of events can be interpreted most simply in terms of energy input over scales of time and space that are large compared to the flare seen in the light of Hα. In support of these points, 5 aspects of the flare are described here: (1) hours before the flare, slow changes in coronal structure were associated with radio continuum emission, suggesting large-scale magnetic-field changes and the presence of energetic electrons; (2) long-lived X-ray loops require sustained energy input for at least an hour after the flare start; (3) interplanetary disturbance near earth is probably related to this limb flare, although the (expected) absence of a shock makes identification uncertain; (4) the coronal mass ejection overlay decaying magnetic field; (5) speed derived from frequency drift of the type II radio burst in the low corona, and from the travel time of the disturbance to 1 a.u., are about twice as great as the observed speed of the coronal mass ejection and of the disturbed solar-wind speed.  相似文献   

3.
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well.  相似文献   

4.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

5.
We observationally deduce the inductive electric field in the photosphere for the first time from the horizontal velocities computed by local correlation tracking (LCT) technique and the vector magnetic fields derived from vector magnetograms. We study the relationship between E and powerful flares (X-class) of four active regions (ARs): NOAA 10720, 10486, 9077 and 8100. It is found that the kernels of flares are roughly located near the inversion lines where maxima of E are observed. Our results show that E relates to the accumulation of non-potentiality in the photosphere and the transportation of non-potentiality from the photosphere to the corona.  相似文献   

6.
The preflare structure, prior to two-ribbon flares, is thought to consist of magnetic field arcades. As a first approximation, the magnetic field is assumed to be invariant along the length of the arcade. The ideal MHD stability of such structures is studied using the energy method. The dense photosphere is simulated by line-typing the magnetic field and a discussion of boundary conditions is presented. Using the energy method, sufficient conditions for stability are obtained for certain magnetohydrostatic fields that also include the effect of gravity. Under certain circumstances, these conditions become necessary and sufficient. Some comments on resistive effects are mentioned.  相似文献   

7.
We present observational results and their physical implications garnered from the deliberations of the FBS Magnetic Shear Study Group on magnetic field shear in relation to flares. The observed character of magnetic shear and its involvement in the buildup and release of flare energy are reviewed and illustrated with emphasis on recent results from the Marshall Space Flight Center vector magnetograph. It is pointed out that the magnetic field in active regions can become sheared by several processes, including shear flow in the photosphere, flux emergence, magnetic reconnection, and flux submergence. Modeling studies of the buildup of stored magnetic energy by shearing are reported which show ample energy storage for flares. Observational evidence is presented that flares are triggered when the field shear reaches a critical degree, in qualitative agreement with some theoretical analyses of sheared force-free fields. Finally, a scenario is outlined for the class of flares resulting from large-scale magnetic shear; the overall instability driving the energy release results from positive feedback between reconnection and eruption of the sheared field.  相似文献   

8.
This paper deals with Solar Maximum Year observations that can shed light on the roles of energetic electron beams and thermal conduction in solar flares. The emphasis is on X-ray and UV images and on the interpretation of chromospheric spectra. The format is that of a one-sided debate advocating the view that most of the flare energy that reaches the chromosphere is transferred by thermal conduction rather than by energetic electron beams. Reference is made to papers offering opposing points of view on this still controversial question.  相似文献   

9.
Based on the light curves and images of RHESSI flares, we tried to make a preliminary classification of solar flares. Three basic types of flares seem to be existed: accordantly gradual flares, accordantly impulsive flares, and early impulsive flares. The proportion for each type is given. The possible physical meaning related to different types is discussed.  相似文献   

10.
High temperature phenomena occurring in solar flares are reviewed based on hard X-ray images and spectral analyses of highly ionized iron lines observed aboard the Hinotori spacecraft.Five basic flare components are proposed, i.e., impulsive (I), gradual hard (GH), thermal (T), quasi thermal (QT) and hot thermal (HT) components. A flare shows some combination of the five components. Energy release and transport for each component would give a lot of variety to the hard X-ray image, spectrum and time history of X-rays.  相似文献   

11.
X-ray observations show that at a time consistent with a coronal mass ejection onset there is a small, soft X-ray burst (precursor). Generally this is followed some 20–30m later by a more significant flare. At the onset time there is frequently simultaneous activity from widely separated points on the Sun (>105km). We present a model which accounts for the relationship between the coronal mass ejection and the precursor using 102–103 keV protons as the energy transfer agent. The protons (1) heat the high coronal loop. Inferred from the simultaneous activity, destabilizing the pressure balance to produce the ejection and (2) are guided by the magnetic field to below the transition region where they heat the chromospheric plasma to produce the precursor X-rays. High correlation between these events and a subsequent flare suggests that there may be a feedback mechanism operating from the coronal mass ejection.  相似文献   

12.
We report on two flare-productive adjacent active regions (ARs), with different levels of coronal mass ejection (CME) association. AR 10039 and AR 10044 produced strong X-ray flares during their disk passages. We examined the CME association rate of X-ray flares and found it to be different between the two ARs. AR 10039 was CME-rich with 72% association with flares, while AR 10044 was CME-poor with an association rate of only 14%. CMEs from the CME-rich AR were faster and wider than the ones from the CME-poor AR. The flare activity of AR 10044 was temporally concentrated over a short interval and spatially localized over a compact area between the major sun spots. We suggest that different pre-eruption evolution and magnetic configuration in the two regions might have contributed to the difference between the two ARs.  相似文献   

13.
Yohkoh has observed many long duration events permitting a statistical study of the properties of these interesting events. We have selected ten flares for analysis which have durations between 5 and 20 hours, and size ranging from C to X GOES class. Employing the Soft X-ray Telescope, the Bragg Crystal Spectrometer, GOES spacecraft, and ground-based H data, we examine the morphology, temperature, emission measure, location of the hard X-ray source, non-thermal velocities and upflows of the plasma at different stages in the flare development. Our results are used to address the question of the energy source that maintains the hot plasma at temperatures of several million degrees for many hours.  相似文献   

14.
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow.  相似文献   

15.
On 27 October, 2003, two GOES M-class flares occurred in an interval of 3 h in active region NOAA 10486. The two flares were confined and their associated brightenings appeared at the same location, displaying a very similar shape both at the chromospheric and coronal levels. We focus on the analysis of magnetic field (SOHO/MDI), chromospheric (HASTA, Kanzelhöhe Solar Observatory, TRACE) and coronal (TRACE) observations. By combining our data analysis with a model of the coronal magnetic field, we compute the magnetic field topology associated with the two M flares. We find that both events can be explained in terms of a localized magnetic reconnection process occurring at a coronal magnetic null point. This null point is also present at the same location one day later, on 28 October, 2003. Magnetic energy release at this null point was proposed as the origin of a localized event that occurred independently with a large X17 flare on 28 October, 2003 [Mandrini, C.H., Démoulin, P., Schmieder, B., Deluca, E., Pariat, E., Uddin, W. Companion event and precursor of the X17 flare on 28 October, 2003. Solar Physics, 238, 293–312, 2006], at 11:01 UT. The three events, those on 27 October and the one on 28 October, are homologous. Our results show that coronal null points can be stable topological structures where energy release via magnetic reconnection can happen, as proposed by classical magnetic reconnection models.  相似文献   

16.
Using ground-based magnetometer data of the April 6–7, 2000, superstorm, we obtained maps of ionospheric and field-aligned currents (FACs). Based on these, we deduced the electrical circuit of the disturbed magnetosphere/ionosphere and a conceptual model of its magnetospheric generators, which supply both hemispheres. This model implies that the generator system creates primarily the Region-1 FACs of Iijima and Potemra at both hemispheres, while the Region-2 and Region-0 FACs form by spreading of the Region-1 currents through the ionosphere. This conclusion is supported by observations.  相似文献   

17.
The polarization of X-radiation emitted by electrons which are accelerated during flares is investigated in a non-thermal model. Monte Carlo calculations combining analytically treated multiple-scattering and random large-angle scattering processes yield the energy and angular distributions of flare electrons penetrating the upper solar atmosphere. The X-ray polarization derived from these distributions is computed as a function of energy, observation angle and column density traversed by the electrons. Initially monoenergetic electrons as well as electrons with a power-law spectrum are considered. The degree of polarization of the total X-radiation obtained by summing over all layers of the atmosphere is compared with observations.  相似文献   

18.
Recent advances in the study of energy release in Flares are reviewed. Progress has been made in modelling coronal X-ray emission and the chromospheric response to energy imput. These advances are based on theoretical studies and on the comparison of complementary data obtained from spacecraft and ground-based observatories. We first review the modelling of the coronal flare derived from radio, X-ray and XUV observations. Then we summarize results on the chromospheric response to various energy imput. Observations of X-ray continuum intensity and polarization, transition zone lines and chromospheric lines do not show evidence of particle trapping by a turbulent front. Although they might be in agreement with trapping and partial precipitation. White light flares appear to result from energy deposited above the photosphere. They are probably due to electron bombardment. The implication of these results on the primary energy release process are discussed and prospects for new research are presented.  相似文献   

19.
20.
We review the recent advances in the field of energy transfer and dissipation in solar flares. New observations and theoretical results have been obtained during the SMY and discussed in several workshops. Important new results have been provided by imaging hard X-ray and radio observations, high resolution spectra in the soft X-ray range, polarization measurements and combined optical, gamma- and X-ray data. We summarize results on the following topics: a) interpretation of hard X-ray bursts; b) heating and cooling of X-ray flare plasmas; c) chromospheric heating and evaporation; d) white-light flares. An overall picture of the importance of transfer processes is given, together with prospects for development of future research topics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号