首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The validation status of the LIMS (Limb Infrared Monitor of the Stratosphere) measurements in the water vapor channel is presented in a brief form. The agreement with other water vapor data taken in correlative balloon underflights is encouraging for this stage of the processing. Future efforts will be made to resolve remaining discrepancies so that operational reduction can begin. Preliminary maps for atmospheric layers between 50 mb and 1 mb show a fairly smooth water vapor field in the summer hemisphere.  相似文献   

2.
Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, Polar Mesospheric Clouds (PMC). The processes of formation and occurrence parameters of PMC constitute an interesting problem in their own right, but recent evidence had been provided which suggests that PMC are a critical indicator of climate change. In this context the feasibility of a low cost method of water vapour measurements using an instrument carried aloft by a sounding rocket has been examined and some of the results discussed. It is proposed to measure the strength of the 936nm water absorption line in a solar occultation configuration employing a CCD detector. This leads to the design of a small, low cost and low-mass instrument, which can be flown on a small rocket, of the type of the Orbital Sciences Corporation Viper 5. Alternatively the instrument can be flown as a “passenger” on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height. Sufficient payload design work was carried out showing that the structural, thermal and electrical requirements for a flight on the Viper 5 rocket can be met and thus making the experiment feasible for a flight.  相似文献   

3.
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution mm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite.  相似文献   

4.
A balloon borne multichannel photometer for measurement of atmospheric scattering in the near ultraviolet and the visible wavelength regions has been developed at the Physical Research Laboratory, Ahmedabad for study of the size distribution and number density of aerosols at tropospheric and lower stratospheric altitudes. The instrumentation involves tracking the sun in elevation and scanning in azimuth. The payload was recently flown on a 100 kg. balloon from the Hyderabad Balloon Facility on 18 April 1984. The balloon reached a float altitude of 35 km and good quality data has been obtained from an altitude of 6 km upto float altitude. Data analysis is still in progress. The present paper details the instrument design and presents a few illustrations of the instrument performance from this flight.  相似文献   

5.
The Ballooncraft Support Systems were developed by NASA Wallops Flight Facility for use on ULDB class balloon missions. The support systems have now flown two missions supporting the Cosmic Rays Energetics and Mass (CREAM) experiment. The first, CREAM I, flown in December 2004, was for a record breaking 41 days, 21 h, and the second flight flown in December 2005, was for 28 days, 9 h. These support systems provide CREAM with power, telecommunications, command, and data handling including flight computers, mechanical structures, thermal management, and attitude control to help ensure a successful scientific mission. This paper addresses the performance and success of these support systems over the two missions.  相似文献   

6.
The HXR79 hard X-Ray experiment was flown the August 26th 1979 from the Milo Base (Sicily, Italy) and a 27-hour flight was achieved. The scientific payload consisted of two Multiwire Spectroscopic Proportional Counters (MWSPC) with 900 cm2 sensitive geometric area each, in the hard X-Ray range (16–180 keV). A single drift scan was performed on the Crab Nebula region after the balloon reached the flotation point (2.9 mbar). The observation gave a maximum counting rate of about 25 counts/s superimposed on a background of about 75 counts/s. The Crab power-law spectrum was observed, and these data provide evidence for a line emission enhancement around 70 keV.  相似文献   

7.
The most recent in the series of STRATOPROBE balloon flights were conducted in the Spring of 1985 from the National Scientific Balloon Facility in Texas. Altitude distributions of HCl and CH4 were derived and compared with our results from flights in previous years. The HCl and CH4 column integrated amounts show a trend towards higher concentrations, not inconsistent with other measurements and model calculations. The CH4 was determined from emission spectra using a scanning radiometer as well as from absorption lines in the HCl spectral region recorded with the interferometer. There is good agreement between the two techniques and with a model simulation.  相似文献   

8.
The purpose of the Nimbus 7 LIMS experiment was to sound the composition and structure of the upper atmosphere and provide data for study of photochemistry, radiation, and dynamics processes. Vertical profiles were measured of temperature and ozone (O3) over the 10-km to 65-km range and water vapor (H2O), nitrogen dioxide (NO2), and nitric acid (HNO3) over the 10-km to ~50-km range. Latitude coverage extended from 64°S to 84°N. Several general features of the atmosphere have emerged from data analyses thus far. Nitrogen dioxide exhibits rapid latitudinal variations in winter and shows hemispheric asymmetry with generally higher vertical column amount in the summer hemisphere. HNO3 data show that this gas is highly variable with altitude, latitude, and season. Smallest mixing ratios occur in the tropics, and the largest values occur in the high latitude winter hemisphere. The results show that O3, NO2, and HNO3 are strongly affected during a stratospheric warming. There is a persistently low water vapor mixing ratio in the tropical lower stratosphere (~2–3 ppmv), a poleward gradient at all times in the mission, and evidence of increasing mixing ratio with altitude at tropical and middle latitudes.  相似文献   

9.
Development overview of the revised NASA Ultra Long Duration Balloon   总被引:1,自引:0,他引:1  
The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ∼176,000 m3 (∼6.2 MCF – Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ∼176,000 m3 (∼6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.  相似文献   

10.
The observation of large solar flares on high altitude balloons requires long duration balloon flights because large flares are infrequent and cannot be predicted with enough reliability and lead time to allow a conventional balloon to be launched and reach altitude before the flare occurs. With the many weeks at float altitude expected for a long duration flight, the probability of “catching” a large flare during solar maximum becomes reasonably high and the study of phenomena which heretofore have required a satellite become accessible to a balloon platform. One example of this type of experiment is the observation of neutrons produced by the interaction of flare accelerated nucleons with the solar atmosphere. Because the neutrons are produced immediately by the flare accelerated particles and are unaffected by their transmission through the upper solar atmosphere and the intervening magnetic fields, their observation at 1 A.U. will provide direct information on the flare acceleration process. Specifically, a measurement of the neutron energy and time spectra will yield the energy spectrum of the charged nucleons in the interval 50 to 500 MeV/amu, the charged particle anisotropy, the height of the acceleration region for limb flares, and information on the two-stage acceleration process. Because the γ-ray spectrum is also sensitive to these factors, a combined neutron and γ-ray measurement will provide a much more stringent test of flare models than either done separately. CWRU and the University of Melbourne have designed the EOSCOR (Extended Observation of Solar and Cosmic Radiation) detector to have the necessary sensitivity to detect neutrons from a flare 0.1 the size of the 4 Aug. 1972 event and to be compatible with the constraints of the long duration balloon system. The detector has been test flown on short duration balloon flights and calibrated at En = 38, 58, and 118 MeV. It is planned to launch it on a long duration balloon flight from Australia in December 1982 when simultaneous γ-ray observations will be possible with the SMM and/or HINTORI satellites.  相似文献   

11.
The Limb Infrared Monitor of the Stratosphere (LIMS) is a 6 channel scanning radiometer which measures the infrared emission by the earth's limb. These measurements are inverted to yield distributions of temperature, ozone, water vapor, nitric acid and nitrogen dioxide. The instrumentation and its orbital performance are briefly described. Retrievals of temperature and nitrogen dioxide are presented, with a discussion of their precision. Comparisons to in-situ rocket and balloon measurements are used to assess their accuracy. Special mention is made of the temperature data supplied for the FGGE II-b data sets. Results for ozone, water vapor and nitric acid are presented in companion papers.  相似文献   

12.
Absolute solar UV spectra were obtained with a 14m spectrometer on a balloon flight from Palestine, Texas on September 23, 1981. This balloon reached a float altitude of 39 km at solar noon. The ozone density profiles derived from these spectra are discussed. The measurements are compared with data obtained from the same calibrated instrument flown in 1976 at solar minimum.  相似文献   

13.
Transmittance functions as well as inversion algorithms have been developed for deriving H2O profiles from radiometer measurements. These computer programs have been applied to evaluate own stratospheric balloon occultation measurements and LIMS (Limb Infrared Monitor of the Stratosphere) radiance measurements in the H2O channel. The results are compared with the H2O profiles in the LIMS data archive. The differences between corresponding H2O profiles are discussed in dependence of altitude and latitude.  相似文献   

14.
Activities in scientific ballooning in Japan during 1998–1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.  相似文献   

15.
The Limb Infrared Monitor of the Stratosphere (LIMS) experiment is a limb scanning infrared sounder designed to measure vertical temperature profiles and the concentrations of key chemical compounds which are important in the stratospheric ozone-nitrogen photochemistry. This paper describes results from the O3 and HNO3 channels with emphasis on validation of the data. Similar discussions of results from the other channels are presented in two companion papers published in these proceedings.  相似文献   

16.
This paper gives the results of investigations performed on the first container (A) of the Biobloc III experiment, flown aboard the orbital station Salyut 7 for 40 days. The space flight resulted in a decreased developmental capacity of Arterlia cysts, hit or not hit by the HZE particles. No effect was observed in cysts in bulk. A synergetic effect of microgravity and gamma pre irradiation is described. The germination of in-flight lettuce seeds was decreased. The space flight resulted also in a higher percentage of cells with chromosomal aberrations. Relations between biological response, TEL and location of HZE particles are discussed.  相似文献   

17.
Two widely available, small size, weight and power camera systems were flown above 97 % of Earth’s atmosphere and showed utility in single filter vegetation and soil analysis in a space analogue environment. The experiment was conducted as a low-cost verification and test analogue to flying on vastly more expensive low Earth orbit missions. Normalised Difference Vegetation Index (NDVI) was used as the metric by which performance was analysed for ground calibration testing, low and near-space altitude remote sensing. Ground calibration testing with a laboratory-grade spectrometer revealed that both cameras were able to return consistent NDVI results, and high-altitude balloon flight allowed similar data capture from an environment similar to space. Although compressed captured imagery had been processed using gamma correction and pre-image processing, these were able to be corrected provided that access to radiometrically-calibrated data was available. The two hobbyist cameras were shown to return scientifically useful results, demonstrating performance, and additionally their utility for citizen science applications in the near-space environment.  相似文献   

18.
将我国所产卤虫(Artemia salina)的卵,由1987年8月5日发射的返地卫星搭载,在空间飞行5天。于飞行完成后第8、21、24、34及66天,随机取卵进行人工孵化及发育观察。见到的主要现象有:(1)飞行卵的早期发育进程显著变慢;(2)随着回收后时间的延长,飞行卵的早期发育速度出现回升的趋势;(3)飞行卵早期发育中的冒出率和孵出率一般都比地面对照组的低,且随着回收后时间的延长,有继续下降的趋势;(4)飞行卵孵出的卤虫,自孵出第1天至接近全部自然死亡的23天内,存活率的下降情况与地面对照组的没有差异。本文提出一种空间飞行因素对卤虫卵损伤的“临界程度”的假设。实验还表明,我国所产的卤虫卵对空间飞行因素的作用是敏感的,是一种空间生物学研究的好材料。   相似文献   

19.
Starting with average 50% success for stratospheric balloon flights during 1959–1969 and attaining 100% success during 1972–1973, the success record dropped to 50% during 1974–1979. Through a critical analysis of 59 flights made from Hyderabad and 21 flights made from other equatorial bases, revised design criteria were proposed for balloons to be flown from equatorial latitudes, which were accepted by M/s Winzen International, Inc. (WII), U.S.A. and have again raised the success record to 93% for 15 flights made since April 1980. A revised analysis for 71 flights made from 1965 to 1984 has been presented. Stratospheric circulation over Hyderabad indicating predominance of easterlies with mesospheric westerlies descending occasionally into stratosphere has been discussed.  相似文献   

20.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号