首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of the large body of data available from solar and stellar coronae, our understanding of the mechanisms responsible for the heating of coronal plasmas to temperatures of the order of ~ 108 K has changed. The solar corona is highly structured by magnetic fields and the acoustic shocks which, according to early theories, should have acted as the coronal energy source have not been observed. Einstein Observatory data show moreover that coronae are present in most regions of the H-R diagram. The observed relationship between X-ray luminosity and rotational velocity in dwarf stars from spectral types F to M again suggests an active role for the magnetic fields.The basic picture which is emerging is that coronae in stellar types from F to M are produced because of the interaction of the magnetic field with the convective velocity fields generated in the photosphere resulting in MHD waves or currents which dissipate in the corona. X-ray emission in early type stars cannot be explained with this mechanism and the models which have been proposed for these stars are not yet completely satisfactory.  相似文献   

2.
The Rho Ophiuchi dark cloud region has been the subject of an extensive guest investigation using the Einstein Observatory. The set of observations comprise 14 IPC fields and 3 HRI fields. The densest part of the cloud has been observed 6 times. Forty seven sources were detected at a level > 3.5 σ and twenty more above 2 σ. The majority of these sources have optical, IR, or even radio continuum counterparts; nine are identified with known T Tauri stars, while several others are identified with stars showing H α in emission. All show a high degree of time variability; flux variations reach factors of 5 in a few hours, or 25 in a day. Apparent luminosities are in the range 10(30) – 10(31)(1) erg.s?1. The possibility that the X-ray variability is due to flares is examined. If this interpretation is correct, one source has been the seat of the largest stellar flare ever recorded in X rays [Lx = 10(32) erg.s?1, Ex ?10(36) ergs-].  相似文献   

3.
The Einstein Observatory and the IUE satellite have provided the observational basis for a major restructuring in theories of coronal formation for late-type stars. For the first time, coronal and transition region emission from a large sample of low mass (1 Mo) dwarf stars has been directly observed, with the unexpected result that essentially all such stars are x-ray emitters. The Sun, which was previously assumed to be typical, is now known to be at the low end of the x-ray luminosity function for solar-type stars. K- and M-dwarfs are observed to have nearly the same luminosity distributions as G-dwarfs and all of these spectral types have a large spread in x-ray luminosity.Observationally, there is a strong correlation between the strength of coronal emission in stars with outer convective zones and the rotation rates of these stars. At the present time we have only the beginnings of a satisfactory theoretical explanation for this correlation; although we are beginning to understand the connection between coronal emission strength and the magnetic field, we do not yet understand the stellar dynamo which generates the magnetic field. Studies of the coronal emission of stars may lead to a better understanding of stellar dynamos.  相似文献   

4.
A broad theme emerging from IUE and Einstein observations of cool stars is that magnetic fields control the structure and energy balance of the outer atmospheres of these stars. I summarize the phenomena associated with magnetic fields in the Sun and show that similar phenomena occur in cool luminous stars. High dispersion spectra are providing unique information concerning densities, atmospheric extension, and emission line widths. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in β Dra (G2 Ib) and perhaps other stars, which I interpret as indicating downflows in closed magnetic flux tubes as are seen in the solar flux tubes above sunspots. Finally, I classify the G and K giants and supergiants into three groups — active stars, quiet stars, and hybrid stars — depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.  相似文献   

5.
An extensive program to study nearby normal galaxies was carried out by various observers using the imaging instruments on the Einstein Observatory; more than 50 such galaxies were detected with 0.5 – 3.0 keV luminosities ranging from 2 × 1038 ergs s?1 to 3 × 1041ergs s?1. The X-ray luminosity of normal galaxies is ~2 × 10?4 of the optical luminosity and shows no strong correlation with morphological type. For the nearest galaxies, (the Large and Small Magellanic Clouds, M31 and M33,) studies, performed with the Observatory, were comparable to the Uhuru survey of the Galaxy. Approximately 30 new SNR were recognized in the Magellanic Clouds as a result. Over 90 sources were detected in M31 of which at least 20 are identified with globular cluster. The numbers of luminous (>1037 ergs s?1) sources detected in the nearest galaxies per unit mass are similar to that found in our own galaxy. Individual X-ray sources in the arms of nearby spirals can be very luminous; seven with luminosities in excess of 1039ergs s?1 have been discovered. The nuclei of some, but not all, normal galaxies are luminous X-ray sources; X-ray activity is not presently predictable from the radio or optical properties of the nucleus.  相似文献   

6.
With the advent of high resolution space observations with high sensitivity, stellar atmospheric research has entered a new phase of rapid development. All stars, and especially hot stars, are now recognized to have atmospheric characteristics that were not suspected before. All hot stars that we can observe with sufficient accuracy show chromospheres and coronae indicative of non-radiative energy fluxes as well as mass loss; these phenomena exhibit a very great range in magnitude among different stars and, in several cases, they are variable in time. These discoveries have pointed out the need for determining the atmospheric structures of hot stars and, ultimately, of determining the mechanisms responsible for the likely common origin of chromospheres-coronae and mass fluxes. This paper will focus on these observational aspects of hot stars -mainly Be stars and OB-normal stars will be treated here- and on the constraints that the observations impose upon models for these stellar atmospheres.  相似文献   

7.
The far UV resonance lines of a sample of 21 early-type stars, which were observed in the soft X-Ray band with the Einstein satellite, are examined using I.U.E. high resolution spectra to search for possible correlation between the X-Ray coronal emission and far UV spectral properties. In particular, those quantities that can give information on the structure of the outer envelope (such as wind terminal velocities, emission-absorption ratios) are measured and compared with the observed X-Ray flux.  相似文献   

8.
9.
Surveys with instruments on the Einstein Observatory have shown that essentially all 0 and B main sequence stars are X-ray sources as are many, if not all, 0B supergiants and Wolf-Rayet stars. The X-ray luminosities are sufficient to explain broad lines from the superionization stages seen in the UV spectra of the stars. High energy resolution spectra from the Solid State Spectrometer are shown to place severe constraints on various models for the location of the X-ray sources in the outer atmospheres of the stars. Coronal and embedded shock models for the X-ray emission are discussed and each is found to have some problems in explaining the X-ray emission of 0B stars. X-ray line emission of Si XIII and S XV in ? Ori is discussed and interpreted as arising from magnetically confined loops.  相似文献   

10.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

11.
Soft X-ray solar and stellar flares appear in the coronae of solar-like stars due to abrupt release of energy accumulated in magnetic fields. To build a quantitatively correct model of a flare we need to know how much energy is released in flares of different sizes and strengths. Here we estimate and compare the energy release rate in flares as different as microflares occurring over the quiet Sun and strong stellar events in RS CVn systems. We find one simple scaling law which describes flares differing one from another by 10 orders of magnitude in the amount of emission measure.  相似文献   

12.
Two soft X-ray images of the Chamaeleon I star forming cloud obtained with the ROSAT Position Sensitive Proportional Counter are presented. Seventy reliable, and perhaps 19 additional, X-ray sources are found. Up to Ninety percent of these sources are certainly or probably identified with T Tauri stars formed in the cloud. Twenty to 35 are probably previously unrecognized ‘weak’ T Tauri (WTT) stars. T Tauri X-ray luminosities range from log , or 102 – 104 times solar levels, with mean in the 0.2–2.5 keV band. The X-ray luminosities of well-studied Chamaeleon cloud members are correlated with a complex of four stellar properties: effective temperature, mass, radius and bolometric luminosity. The spatial distribution, H-R diagram locations of the stars indicate WTT and CTT are coeval. The total premain sequence population of the cloud is likely to be > 100 stars, with WTT stars outnumbering ‘classical’ T Tauri (CTT) stars by 2:1.  相似文献   

13.
14.
15.
Supergiant fast X-ray transients are a subclass of high mass X-ray binaries displaying a peculiar and still poorly understood extreme variability in the X-ray domain. These sources undergo short sporadic outbursts (LX∼LX 1036–1037 erg s−1), lasting few ks at the most, and spend a large fraction of their time in an intermediate luminosity state at about LX∼LX 1033–1034 erg s−1. The sporadic and hardly predictable outbursts of supergiant fast X-ray transients were so far best discovered by large field of view (FOV) coded-mask instruments; their lower luminosity states require, instead, higher sensitivity focusing instruments to be studied in sufficient details. In this contribution, we provide a summary of the current knowledge on supergiant fast X-ray transients and explore the contribution that the new space mission concept LOFT, the Large Observatory for X-ray Timing, will be able to provide in the field of research of these objects.  相似文献   

16.
A summary of IUE results concerning late-type stars is presented. Observations show that high-temperature outer atmospheres, as indicated by N V, C IV emission at T ≈ 105K, are generally present only in high-gravity (log g ? 2) stars. Objects with high-temperature emission tend not to exhibit cool circumstellar shells, and vice versa, although there are several transition objects, the hybrid atmosphere stars, which combine C IV emission with cool winds. Ultraviolet emission from stellar transition regions correlates well with chromospheric and X-ray emission. Transition-region line ratios indicate that many stars have differential emission measure distributions similar to the Sun's. Ultraviolet observations also give indications of important dynamical effects in low-gravity stars. Density diagnostics indicate extended chromospheres for some red giants and supergiants. In addition, the large widths of lines of high temperature ions in several luminous stars indicate supersonic motions.  相似文献   

17.
Stellar occultations provide a useful means of measuring the trace gas composition of the Earth's mesosphere with a sensitivity of order one part per billion. The operational details will differ from those of other astronomical observations by ST, because of the difficulties in guiding near the Earth's limb. Two specific trace gases of interest to atmospheric studies, Cl and ClO, are discussed in this paper.  相似文献   

18.
硬X射线暂现源的偶发性星风增强模型   总被引:1,自引:0,他引:1  
本文讨论了硬X射线暂现源的偶发性星风增强模型,计算了爆发期间光学光度的变化,解释了光学光度和X射线光度变化的不同步现象,结果表明这种模型可能是比较合理的。   相似文献   

19.
We describe the progress which has been made in constructing a new type of X-ray telescope, which operates at normal incidence in the soft X-ray region by the use of multilayer coatings. The principles involved in state-of-the-art multilayer technology and some recent high-resolution imaging results are discussed. A rocket payload incorporating a multilayer X-ray mirror is presently being constructed. It is of Ritchey-Chretien design and the expected spatial resolution is 14arcsec. The scientific program for solar coronal studies and future instrumental developments are also discussed.  相似文献   

20.
The development of significantly improved representations of solar EUV inputs for computer-aided investigations of the terrestrial thermosphere and ionosphere has become attractive particularly for the present solar cycle which has been covered by reasonably complete and continuous EUV observations from the AE-E Satellite. These representations try to satisfy some rather incongruous requirements of spectral detail, regarding (a) the strong wavelength-dependence in the terrestrial atmospheric cross sections of the various types of EUV photon interactions, (b) the great differences in the relative amplitudes of the various types of variations in the full-disk fluxes of solar emissions at different wavelengths, and (c) the persisting desire to use only a small number of daily indices as actual input variables for computational models supposed to cover the entire EUV wavelength range (remembering the great success of empirical thermospheric models using only two indices). These general physical and specific aeronomical demands indeed outline a very difficult task. The present study, based mainly on AE-E satellite observations during 1976–1979, represents an exploratory step, only clarifying some important developmental aspects, without recommending any specific formulations for immediately practicable adoption in aeronomical modelling at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号