首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of galaxies, both normal and active, have been observed in ultraviolet light by the Optical Monitor on XMM-Newton. These are some of the deepest wide-field ultraviolet images of these galaxies yet obtained, and in many cases the first collected in this waveband. We present images of five active galaxies, and discuss the potential uses of the ultraviolet surface brightness distribution and morphology, in association with X-ray data, for Active Galactic Nuclei, star formation and galaxy evolution studies.  相似文献   

2.
We have measured the strengths of Ca II triplet and Mgb stellar absorption lines in the nuclear and off-nuclear spectra of Seyfert galaxies. These features are diluted to varying degrees by continuum emission from the active nucleus and from young stars. Ca II triplet strengths can be enhanced if late-type supergiant stars dominate the near-IR light. Thus, objects with strong Ca II triplet and weak Mgb lines may be objects with strong bursts of star formation. We find that for most of our sample the line strengths are at least consistent with dilution of a normal galaxy spectrum by a power law continuum, in accord with the standard model for AGN. However, for several Seyferts in our sample, it appears that dilution by a power law continuum cannot simultaneously explain strong Ca II triplet and relatively weak Mgb. Also, these objects occupy the region of the IRAS color-color diagram characteristic of starburst galaxies. In these objects it appears that the optical to near-IR emission is dominated by late-type supergiants produced in a circumnuclear burst of star formation.  相似文献   

3.
The Nobeyama Millimeter Array has been used to map CO(1-0) and HCN(1-0) emission in nearby Seyfert galaxies. A wide variety of molecular gas distributions are found, and there appears to be no “typical” gas distribution either in type-1 Seyferts or type-2s. All the gas distributions and kinematics in the observed Seyferts can be understood as a response to a non-axisymmetric potential in the central regions, suggesting that a small scale (a few 100 pc — a few kpc) distortion of the underlying potential is necessary for Seyfert activity, although it is not a sufficient condition. Circumnuclear star formation in the host of the observed Seyferts can occur via gravitational instabilities of the molecular gas, as in the case of star forming regions in non-Seyfert galaxies. Our results may support the idea that the host galaxies of Seyferts (both type-1s and 2s) and non-Seyferts are the same in terms of the fuel and trigger of star formation. Near the center of Seyfert nuclei (r < a few 100 pc), we find that the molecular gas tends to be gravitationally stable. We find that the RHCN/CO value ranges over an order of magnitude, from 0.086 to 0.6 among Seyfert galaxies. It seems that the presence of kpc scale jet/outflows is related to the extremely high RHCN/CO values.  相似文献   

4.
We have found compact, near-nuclear X-ray sources in 21 (54%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 – 2.4 keV) of these compact X-ray sources are ∼1037 – 1040 erg s−1. The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ∼390 pc. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Γ ≈ 2.5) spectral slope. A multicolor disk blackbody plus power-law model fits the data from the spiral galaxies well, suggesting that the X-ray objects in these galaxies may be similar to a black hole candidate (BHC) in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ≈ 0.7 keV) gas dominates the emission. The fact that the spectral slope of the spiral galaxy sources is steeper than in normal type 1 active galactic nuclei (AGNs) and that relatively low absorbing columns (NH ≈ 1021 cm−2) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral galaxies may be BHCs, low-luminosity AGNs, or possibly X-ray luminous supernovae. We estimate the black hole masses of the X-ray sources in the spiral galaxies (if they are BHCs or AGNs) to be ∼102–103 M. The X-ray sources in the elliptical galaxies may be BHCs, AGNs or young X-ray supernova also.  相似文献   

5.
The great sensitivities of the Chandra X-ray Observatory and XMM-Newton have allowed us to begin to explore the X-ray emission from galaxies at moderate to high redshift. By using the stacking method, we show that we can detect the ensemble emission from normal elliptical, spiral and irregular galaxies out to redshifts approaching unity. The average X-ray luminosity of these galaxy types can then be compared with the results of models of the evolution in the numbers of low-mass and high-mass X-ray binaries and can possibly be used to constrain models of star formation.  相似文献   

6.
We discuss the relevance of UV data in the detection and characterization of hot massive stars and young stellar populations in galaxies. We show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope (HST) multi-wavelength data including UV filters, which imaged several regions at a linear resolution (projected) of less than half a pc in these galaxies, and from GALEX far-UV and near-UV wide-field, low-resolution imaging of the entire galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged within broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas. We show how uncertainties in metallicity and type of selective extinction for the internal reddening may affect the results, and how an appropriate complement of UV filters could reduce such uncertainties, and significantly alleviate some parameter degeneracies.  相似文献   

7.
This paper presents an update of what we have learned in the last year about the ULX phenomenon. New results are presented on radio emission from Holmberg II and a review is given on the recent X-ray data on timing and spectra. The new X-ray spectroscopic and optical imaging survey of nearby ULX with XMM allows us, for the first time, to place the average properties of these objects on a statistical basis. Direct examination of the sites of ULXs in nearby galaxies shows that 1/3 of them are not in or near star forming regions, indicating that a substantial fraction of ULX are not directly associated with young star formation. There are two ULX which have been identified with B stars as the optical counterparts on the basis of optical spectroscopy. Radio imaging of the Holmberg II ULX shows that it lies in a luminous extended radio source and that the radio emission is not beamed. A statistical study of ULX spectra in nearby galaxies shows that the ratio of ‘high state’ to ‘low state’ ULXs is 1:1 and that the high state objects, in general, are best fit with low temperature black bodies with a steep power law index. The objects with high state spectra are systematically more luminous than the objects with low state spectra consistent with the hypothesis that both are drawn from a population which shows state changes similar to those of black holes in the Milky Way. If this is true then the masses implied for the objects with the low state spectra are greater than 50M.  相似文献   

8.
Imaging studies have shown that ∼ 25% of LINER galaxies display a compact nuclear UV source. I compare the HST ultraviolet (1150–3200 Å) spectra that are now available for seven such “UV-bright” LINERs. The spectra of NGC 404, NGC 4569, and NGC 5055 show clear absorption-line signatures of massive stars, indicating a stellar origin for the UV continuum. Similar features are probably present in NGC 6500. The same stellar signatures may be present but undetectable in NGC 4594, due to the low signal-to-noise ratio of the spectrum, and in M81 and NGC 4579, due to superposed strong, broad emission lines. The compact central UV continuum source that is observed in these galaxies is a nuclear star cluster rather than a low-luminosity active galactic nucleus (AGN), at least in some cases. At least four of the LINERs suffer from an ionizing photon deficit, in the sense that the ionizing photon flux inferred from the observed far-UV continuum is insufficient to drive the optical H I recombination lines. Examination of the nuclear X-ray flux of each galaxy shows a high X-ray UV ratio in the four “UV-photon starved” LINERs. In these four objects, a separate component, emitting predominantly in the extreme-UV, is the likely ionizing agent, and is perhaps unrelated to the observed nuclear UV emission. Future observations can determine whether the UV continuum in LINERs is always dominated by a starburst or, alternatively, that there are two types of UV-bright LINERs: starburst-dominated and AGN-dominated. Interestingly, recent results show that starbursts dominate the nuclear energetics in many Seyfert 2s as well.  相似文献   

9.
Using data from the Wide Field Camera EUV all-sky survey, we have established upper limits to the EUV flux from a sample of 30 bright, nearby, non-active spiral galaxies. These galaxies were chosen to be those most likely to be detected in the EUV on the basis of (i) low interstellar absorption within our own galaxy, (ii) brightness in other wavebands, (iii) high star formation activity, and (iv) proximity. The derived EUV upper limits are restrictive, and establish for the first time that the EUV flux escaping from galaxies does not constitute a major component of their bolometric luminosity, and in particular that it cannot be the sink for the energy injected into the interstellar medium by supernova explosions, as had been suggested following the failure to detect this power in the X-ray band.  相似文献   

10.
Many nearby galaxies contain optical signatures of nuclear activity in the form of LINER nuclei. LINERs may be the weakest and most common manifestation of the quasar phenomenon. The physical origin of this class of objects, however, has been ambiguous. I draw upon a number of recent observations to argue that a significant fraction of LINERs are low-luminosity active galactic nuclei. The evidence in favor of this interpretation includes the similarity in the properties of the host galaxies of LINERs and Seyferts, the detection of broad-line regions, the detection of black holes in a handful of nearby galaxies that are spectroscopically recognized as LINERs, the presence of a compact nuclear source seen in the radio, ultraviolet, and X-rays, and the detection of nonthermal spectra in the hard X-ray band. The spectral energy distributions of LINERs differ dramatically from those of luminous AGNs, most notably in the absence of the “big blue bump.” This and other characteristics suggest that the central engine in LINERs is fed by a very low accretion rate.  相似文献   

11.
The use of the 2 000 Å transmission window of the atmosphere permitted to observe for the first time from a balloon gondola the nearest galaxies ; 30 arc/sec. resolution images were obtained for M 31, spiral arms and nucleus, M 33, M 101, with their external spiral structure, M 82 and NGC 3 077. Nearly three hundred more distant galaxies have been detected up to the magnitude V = 13. Several HII regions of the Galaxy have been observed, chiefly NGC 7 000 and the Cyghus Loop. Numerous blue stars of the halo have been identified.  相似文献   

12.
Imaging X-ray observations of normal spiral galaxies show extended and complex x-ray emission, easily explainable with a complex of unresolved X-ray sources. A variety of nuclear sources, including starburst nuclei and miniature active nuclei are seen. The total (0.5–3.0 keV) luminosities are in the range of Lx 1038 - 1040 erg s−1. The X-ray luminosity is linearly correlated with the optical luminosity. It is also correlated with the radio continuum luminosity at 21cm, but following a power law relationship with an exponent α = 0.6. This latter relationship might have implications on the Population I X-ray binary formation models and/or on the origin of the radio continuum emission in spiral galaxies  相似文献   

13.
A design study of an ultraviolet-telescope satellite (UVSAT) has been carried out by the Japanese astronomical community. The main purpose of this satellite mission would be to investigate (i) the distribution and nature of ultraviolet sources in star clusters, galaxies, and clusters of galaxies, (ii) the physical structures of galactic nebulae, and (iii) the dynamics of stellar and galactic activity. A 60 cm, f/4 Cassegrain telescope will be launched into a semi-circular orbit of ~500 km altitude and of ~30° inclination, by an ISAS/Japan M3S-III rocket. An intensified CCD camera and/or a concave-grating spectrograph will be operated for the wavelength range λ?1200 Å. Various possible auxiliary instruments and sub-telescopes are considered.  相似文献   

14.
The X-ray evolution of the luminosity of normal galaxies is primarily driven by the evolution of their X-ray binary populations. The imprints left by a cosmological evolution of the star formation rate (SFR) will cause the average X-ray luminosity of galaxies to appear higher in the redshift range 1–3. As reported by White and Ghosh [ApJ, 504 (1998) L31] the profile of X-ray luminosity with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. In order to observe the high redshift (z>3) universe in the X-ray band, it is necessary to avoid confusion from foreground field galaxies. We report on the predictions of these models of the X-ray flux expected from galaxies and the implications for the telescope parameters of future deep universe X-ray observatories.  相似文献   

15.
The results of 1–20 μm infrared photometry of seven 3CR radio galaxies are discussed. The broad line galaxies all show steep infrared spectra with a power law index α −2.4 (F ∝ ν) in direct continuation of the optical spectra. These spectra are far steeper than those observed in Seyfert 1 galaxies, the radio quiet counterparts of broad line radio galaxies. No infrared excesses were observed in narrow line radio galaxies. However, more sensitive observations are needed before any resemblance in the infrared between narrow line radio galaxies and Seyfert 2 galaxies can be excluded.  相似文献   

16.
The distribution and the dynamics of the cold gas in the circumnuclear regions (r ≲ [1 − a few] kpc) of disk galaxies have been observed at high resolutions of a few arcsec in λ2.6 mm CO (J=1→0) line emission. Distinct CO features are commonly found in the observed disk galaxies and they are different from galaxy to galaxy. They are explained by means of orbit-resonance theories and dynamical evolution. The evolutionary sequence in time is constructed based on the studies of dynamics in theoretical works and numerical simulations in the literature. Not only the behavior of the cold gas but also the starburst, outbreaks of the active galactic nucleus, and the evolution of global structures in disk galaxies are discussed in the bar-driven evolution scenario.  相似文献   

17.
We present new observational data that tackle the issues of the star formation in Seyfert galaxies, the obscuration and fuelling mechanisms of active galactic nuclei, and the connection between these phenomena. New ISOCAM mid-IR images of nearby Seyfert 2 galaxies confirm that these systems are characterized by enhanced star forming activity. In barred systems the star forming activity occurs preferentially along the bar, indicating that these bars have formed recently and are still in the process of transporting gas towards the center. New X-ray data indicate that the gaseous column density absorbing Sy2 nuclei is a function of the bar strength, therefore indicating that stellar bars play an important role in obscuring AGNs. We speculate that non-axisymmetric disturbances (interaction/bars) both enhance the star forming activity in host galaxy and drive gas into the nuclear region to obscure the AGN, thus making the observed starburst-Sy2 connection. On smaller scales (10–100 pc), we report the discovery of a nuclear gaseous bar in the nearby Sy2 Circinus galaxy. The molecular gas kinematics indicates that this bar causes the gas to flow into the nuclear 10 pc. In the nuclear 10 pc we detect a young nuclear stellar cluster. We show that the post-main-sequence mass loss of this young nuclear stellar population could account for the fuelling of the active nucleus.  相似文献   

18.
The entropy in the hot X-ray gas in groups of galaxies is a fossil of the process of galaxy formation The amount of entropy in these low mass systems considerably exceeds that predicted from structure formation models. To explain these results requires “extra” energy which is a relic of the process of star formation and active galaxy heating. We present new XMM results on the entropy and entropy profiles. These results are inconsistent with pre-heating scenarios which have been developed to explain the entropy floor in groups but are broadly consistent with models of structure formation which include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process which controls the transformation of gas into stars and thus the formation of structure in the universe.  相似文献   

19.
Elliptical galaxies exhibit a continuum of behaviour between ‘normal’ and highly active objects, with no clear dividing line between the two classes. High-resolution radio observations show that many bright ellipticals contain parsec-scale radio cores which are qualitatively similar to the central engines of radio galaxies but up to a million times less powerful. In contrast, the radio cores of spiral galaxies are qualitatively different from those in ellipticals, providing some clues to why radio galaxies are always ellipticals rather than spirals.  相似文献   

20.
We use the combined photometric GALEX + SDSS database to look for populations of luminous blue star-forming galaxies. These were initially identified from such a sample at redshifts near 0.4, using SDSS spectra. We make use of the NUV, g, and i colour index previously defined in our previous paper, to separate stars and QSOs, to locate more of these unusual galaxies, to fainter limits. They are found in significant numbers in two different regions of the related colour-magnitude plot. Within these regions, we use the ensemble 7-colour photometry (FUV, NUV, u, g, r, i, z) to postulate the populations of blue star-forming galaxies at redshifts near 0.4 and 1.0, from a full photometric sample of over half a million.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号