首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent ultraviolet and X-ray observations pertaining to the outer atmospheric structure of intermediate mass (4–6 M0) stars and the evolution of their structure are presented. A distance-limited (d ≤ 200 pc) IUE ultraviolet survey of early K bright giants shows that C IV emission commonly is present. These stars are almost evenly split between stars showing hybrid-chromospheric and coronal outer atmospheric structures. EXOSAT observations have been obtained for three hybrid stars, of which only α TrA, the nearest, is detected. The temperature of the emitting plasma is likely to be ∼106K. Observations of six K II stars made with the Einstein satellite show no detections. The general conclusion from the available X-ray data is that early K bright giants are not strong X-ray sources.  相似文献   

2.
A summary of IUE results concerning late-type stars is presented. Observations show that high-temperature outer atmospheres, as indicated by N V, C IV emission at T ≈ 105K, are generally present only in high-gravity (log g ? 2) stars. Objects with high-temperature emission tend not to exhibit cool circumstellar shells, and vice versa, although there are several transition objects, the hybrid atmosphere stars, which combine C IV emission with cool winds. Ultraviolet emission from stellar transition regions correlates well with chromospheric and X-ray emission. Transition-region line ratios indicate that many stars have differential emission measure distributions similar to the Sun's. Ultraviolet observations also give indications of important dynamical effects in low-gravity stars. Density diagnostics indicate extended chromospheres for some red giants and supergiants. In addition, the large widths of lines of high temperature ions in several luminous stars indicate supersonic motions.  相似文献   

3.
Ultraviolet spectra of supernova remnants obtained with the IUE satellite provide unique information concerning the shock conditions and elemental abundances in the optically bright filaments. High temperature species such as N V provide diagnostics for shock velocities above 100 km s?1, and strong lines of carbon and silicon in the IUE spectral range make it possible to study the destruction of refractory grains in shocked interstellar gas. Observations of a non-radiative shock at the edge of the Cygnus Loop provide constraints on the physics of the shock front itself. Most of the very young remnants whose optical spectra show anomalous elemental abundances are too highly reddened for IUE observations, but extensive observations of the Crab Nebula and a spectrum of the supernova remnant in NGC 4449 yield carbon to oxygen ratios from which the mass of the progenitor may be estimated.  相似文献   

4.
The presence of compact X-ray sources in globular clusters allows diagnostic studies of both the X-ray sources themselves and the globular clusters to be carried out. A review of much of this work, primarily based on Einstein X-ray observations and supporting studies of globular clusters at radio through UV wavelengths, is presented. The compact X-ray sources in globular clusters are found to be compact binaries containing neutron stars and - in a separate lower luminosity component of an apparently bimodal luminosity function - possibly white dwarfs. Implications for the formation and evolution of compact binary X-ray sources in globular clusters and in the galactic bulge are discussed. In particular, new evidence is presented that the galactic bulge sources may be compact binaries in the remnants of disrupted globular clusters.  相似文献   

5.
Red-shifted high velocity gas components (HVC) with velocities between 40 to 120 kms−1 have been detected in UV spectra towards several stars observed with IUE. The gas producing the components is detected across several degrees in the sky but it is patchy in nature. The physical properties of the material responsible for the HVC appear quite similar to those derived from direct observations of supernova remnants. Recent additional observations of the gas kinematics have been made through high resolution spectra of the NaD lines. Also, IRAS maps of infrared dust emission are presented for one region of sky of particular interest. In this report we review the observational material and discuss possibilities for the nature and origin of the HVC gas.  相似文献   

6.
Theoretical stellar structure models find that stars later than ∼dM3 are fully convective. It is widely believed that this should result in reduced non-radiative heating and activity levels, however, the observational evidence is sparse and somewhat contradictory. In order to expand the number of atmospheric diagnostics for these stars, we have obtained deep short wavelength (SWP) IUE spectra of 5 M dwarfs later than spectral type dM5. Exposure times ranged from 4 to 7 hours. Only upper limits were measured for chromospheric and transition region lines, thus appearing to rule out enhanced line emission activity. The fractional luminosities of C IV (λ1550), C II (λ1335), and C I (λ1657) relative to Lbol indicate that emission lines in the temperature range 6000 K to ∼1 × 105K are up to an order of magnitude weaker than in earlier M dwarfs having radiative cores. The lower limits on line fluxes for Barnard's star are significantly below those of the other stars in the program.  相似文献   

7.
The evidence for a black hole located at the dynamical center of the Milky Way and identified with the unusual radio source, Sgr A1, is now very compelling. Proper motion and radial velocity surveys of stars clearly demonstrate the presence of a non-luminous concentration of 2.6 × 106 M within a volume of radius ∼0.01 pc centered on Sgr A1. At present, the accretion rate onto this object is rather small, leading to a total accretion luminosity at radio through far-IR wavelengths < 103 L. The accreted material apparently originates in the winds of nearby massive stars. However, neither the stellar nor the gaseous environments are static. The surrounding cluster of massive stars, most lying well within a parsec, is only a few million years old, and is destined to fade substantially within another 107 years. How did such a cluster form in the immediate and tidally stressed vicinity of a supermassive black hole? The circumnuclear disk of gas, which presently has an inner radius of 1 pc, seems destined to migrate inwards and eventually cause a much higher accretion rate onto Sgr A1, with a consequent flurry of new activity. Because the young stars and gas in the vicinity of the black hole interact with each other, the episodes of recurrent activity there can be described in terms of a limit cycle, which effectively controls the growth of the central black hole. In addition to describing the steps of this cycle, we identify several key observations which serve as potential clues to the past activity not only of our Galactic center, but to the activity of gas-rich nuclei in general.  相似文献   

8.
This paper reviews the multi-wavelength properties of two groups of pulsars, the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), that are generally interpreted as isolated neutron stars with strong magnetic fields of 1014–1015 G. Most of these sources have now been observed at different wavelengths, from the radio band to hard X-rays. Several new members of these classes have been discovered in the last few years, due to their transient nature. The distinction between AXPs and SGRs is becoming less evident, as more observations are collected which show similar properties in all these sources.  相似文献   

9.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

10.
In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and HST as well as our balloon-borne hard x-ray telescope EXITE and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H images of two clusters with HST and found CV candidates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two ‘dim source’ fields in ω-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and LMXBs and the origin of hot gas in globulars.  相似文献   

11.
For the distant giant planets, Uranus and Neptune, the observation of aurorae may be the best astronomical technique for the detection of planetary magnetic fields, with implications for the structure and composition of their interiors. Aurorae may be detected by emssion of H I Ly α (1216 Å) and by H2 bands near 1600 Å. The latter are important for very faint aurorae because there is essentially no planetary, interplanetary or geocoronal scattering of sunlight to contaminate the signal. For Uranus, present IUE results suggest the presence of a strong aurora at Ly α, but the background and instrument noise levels are very high compared to the apparent signal. At 1600 Å, the IUE instrument noise renders the H2 emission bands on Uranus marginal at best. No aurora has yet been observed on Neptune. For Jupiter, where the existence and general characteristics of the magnetic field are well established, there is disagreement between ground-based infrared and space-borne ultraviolet observations of the location of the aurorae. For all four giant planets, Space Telescope can improve upon the quality of current optical observations. For spectroscopy, the low resolution mode of the High Resolution Spectrograph (HRS) is particularly well suited to auroral observations because of its spectral range, adequate resolution and high sensitivity. For ultraviolet imaging through appropriate filters, the ST spatial resolution, expected to be of order 5 hundredths of an arc second, is also well suited to determine the spatial properties of the aurorae.  相似文献   

12.
The contribution of UV spectroscopy to the understanding of massive X-ray binaries, is reviewed. Results are given in the context of normal stars and binaries. The IUE results have enabled a greater understanding of the effects of accretion disks and X-ray heating in the systems, and provide absolute fluxes and luminosities. High-dispersion data reveal the effects of X-rays on the structure of hot star winds. Some current problems are indicated, and the future roles of IUE and ST discussed in their resolution.  相似文献   

13.
The Pinhole/Occulter Facility concept uses a remote occulting mask to provide high resolution observations of the solar corona and of astronomical X-ray sources. With coded-aperture and Fourier-transform techniques, the Pinhole/Occulter makes images at a resolution of 0.2 arc sec for 2 - 120 keV X-rays, using a 50-m boom erected from the payload bay of the Space Shuttle or mounted on a free-flying platform. The remote occulter also creates a large shadow area for solar coronal observations; the Pinhole/Occulter concept includes separate optical and ultraviolet telescopes with 50-cm apertures. These large telescopes will provide a new order of resolution and sensitivity for diagnostic observations of faint structures in the solar corona. The Pinhole/Occulter is a powerful and versatile tool for general-purpose X-ray astronomy, with excellent performance in a broad spectral band complementary to that accessible with AXAF. The large collecting area of 1.5 m2 results in a 5σ detection threshold of about 0.02 μJy for the 2 - 10 keV band, or about 10?5 ph(cm2sec keV)?1 at 20 keV.  相似文献   

14.
We present early results from the Far Ultraviolet Space Telescope (FAUST), which flew in March 1992 with the ATLAS space shuttle mission. The telescope provides wide-field images in the far ultraviolet (1400–1800 Å). Studies underway using the data obtained on this mission include establishing the brightness and distribution of far ultraviolet stars in the halo of our Galaxy, establishing the far ultraviolet properties of nearby galaxies and nearby clusters of galaxies, analyzing the diffuse galactic light, and searching for the origin of the extragalactic ultraviolet light. We discuss the instrument performance, and early results from these observations.  相似文献   

15.
EXOSAT observations of the 19 Nov 1978 and 25 Mar 1979b gamma bursters are presented, for the 0.02–2.5 keV energy range. No source was detected in either case, leading to temperature upper limits for the neutron stars assumed to be present of 105–106 °K. Polar cap accretion rates are constrained to values of 10−12–10−18 M/y km2. The EXOSAT non-detection of the source discovered by the Einstein satellite in the 19 Nov 1978 error box may be explained if the burster is more distant than about 1.5 kpc.  相似文献   

16.
Stellar winds are found in hot and luminous stars of all types. We see evidence of these winds in P Cygni profiles of resonance lines in the UV spectral regions, and obtain density information from them, and from optical emission lines and from free-free radiation in the infrared and radio continua from the ionized plasma. Data recently acquired from the IUE satellite are now sufficient to enable us to outline the broad parameters of these winds. It is found that for the hottest stars, those of 0-type, the mass loss rate ? is proportional to Lα. A proportionality between ? and L is predicted by the theory of radiatively driven winds; the value for α is also anticipated by the details of the theory. The dispersion of individual stellar values may be due to observational uncertainty alone, but it may also suggest that other physical parameters affect the stellar winds. The kinetic energy input of the stellar winds to the interstellar medium is considerable and may, in aggregate, be of the same order as the contribution of supernovae.  相似文献   

17.
The Rho Ophiuchi dark cloud region has been the subject of an extensive guest investigation using the Einstein Observatory. The set of observations comprise 14 IPC fields and 3 HRI fields. The densest part of the cloud has been observed 6 times. Forty seven sources were detected at a level > 3.5 σ and twenty more above 2 σ. The majority of these sources have optical, IR, or even radio continuum counterparts; nine are identified with known T Tauri stars, while several others are identified with stars showing H α in emission. All show a high degree of time variability; flux variations reach factors of 5 in a few hours, or 25 in a day. Apparent luminosities are in the range 10(30) – 10(31)(1) erg.s?1. The possibility that the X-ray variability is due to flares is examined. If this interpretation is correct, one source has been the seat of the largest stellar flare ever recorded in X rays [Lx = 10(32) erg.s?1, Ex ?10(36) ergs-].  相似文献   

18.
The International Ultraviolet Explorer (IUE) has provided both improved spectral resolution and some spatial resolution for UV observations of Jupiter. Previous satellite observations have produced albedo curves for Jupiter showing the influence of Rayleigh scattering, and of some absorber(s) shortward of 2500Å on the UV spectrum. Constraints on the abundance of several minor constituents of the Jovian atmosphere were derived from the OAO-2 data. The IUE low dispersion data has a resolution of 8Å, making it possible to detect individual molecular features. A series of C2H2 absorptions in the 1750Å region have been identified, and indications of NH3 absorptions are present in the 1950Å region.  相似文献   

19.
We discuss some recent observations of red dwarf flare stars. When observed over periods of about 8 hours, each of 4 flare star systems displayed at least one major flare at 20 cm. Quiescent emission at 6 cm was seen from UV Ceti and EQ Peg A, but flares were much less frequent at 6 cm than at 20 cm. We also summarize earlier observations of quiescent emission from UV Ceti. Observations of highly polarized flares with brightness temperatures in excess of 1010 K appear to be common on red dwarf stars. We have also found narrowband flares which strengthen the argument that a coheren emission mechanism is involved in these flares. One of those narrowband flares allows us to place severe constraints on conditions in the flare source, and if the flare is cyclotron maser emission it seems unlikely that magnetic reconnection is involved in the flare.  相似文献   

20.
Using the new generation of X-ray observatories, we are now beginning to identify populations of close binaries in globular clusters, previously elusive in the optical domain because of the high stellar density. These binaries are thought to be, at least in part, responsible for delaying the inevitable core collapse of globular clusters and their identification is therefore essential in understanding the evolution of globular clusters, as well as being valuable in the study of the binaries themselves. Here, we present observations made with XMM-Newton of six globular clusters, in which we have identified neutron star low mass X-ray binaries and their descendants (millisecond pulsars), cataclysmic variables and other types of binaries. We discuss not only the characteristics of these binaries, but also their formation and evolution in globular clusters and their use in tracing the dynamical history of these clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号