首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A summary of IUE results concerning late-type stars is presented. Observations show that high-temperature outer atmospheres, as indicated by N V, C IV emission at T ≈ 105K, are generally present only in high-gravity (log g ? 2) stars. Objects with high-temperature emission tend not to exhibit cool circumstellar shells, and vice versa, although there are several transition objects, the hybrid atmosphere stars, which combine C IV emission with cool winds. Ultraviolet emission from stellar transition regions correlates well with chromospheric and X-ray emission. Transition-region line ratios indicate that many stars have differential emission measure distributions similar to the Sun's. Ultraviolet observations also give indications of important dynamical effects in low-gravity stars. Density diagnostics indicate extended chromospheres for some red giants and supergiants. In addition, the large widths of lines of high temperature ions in several luminous stars indicate supersonic motions.  相似文献   

2.
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically ?1500 K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching 10191019 cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ∼97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.  相似文献   

3.
The Wolf–Rayet (WR) stars are hot luminous objects which are suffering an extreme mass loss via a continuous stellar wind. The high values of mass loss rates and high terminal velocities of the WR stellar winds constitute a challenge to the theories of radiation driven winds. Several authors incorporated magnetic forces to the line driven mechanism in order to explain these characteristics of the wind. Observations indicate that the WR stellar winds may reach, at the photosphere, velocities of the order of the terminal values, which means that an important part of the wind acceleration occurs at the optically thick region. The aim of this study is to analyze a model in which the wind in a WR star begins to be accelerated in the optically thick part of the wind. We used as initial conditions stellar parameters taken from the literature and solved the energy, mass and momentum equations. We demonstrate that the acceleration only by radiative forces is prevented by the general behavior of the opacities. Combining radiative forces plus a flux of Alfvén waves, we found in the simulations a fast drop in the wind density profile which strongly reduces the extension of the optically thick region and the wind becomes optically thin too close its base. The understanding how the WR wind initiate is still an open issue.  相似文献   

4.
Alfvén waves have been invoked as an important mechanism of particle acceleration in stellar winds of cool stars. After their identification in the solar wind they started to be studied in winds of stars located in different regions of the HR diagram. We discuss here some characteristics of these waves and we present a direct application in the acceleration of late-type stellar winds.  相似文献   

5.
6.
β-Decay and positron decay are believed to play a consequential role during the late phases of stellar evolution of a massive star culminating in a supernova explosion. The β-decay contributes in maintaining a respectable lepton-to-baryon ratio, Ye, of the core prior to collapse which results in a larger shock energy to produce the explosion. The positron decay acts in the opposite direction and tends to decrease the ratio. The structure of the presupernova star is altered both by the changes in Ye and the entropy of the core material. Recently the microscopic calculation of weak interaction mediated rates on key isotopes of iron was introduced using the proton–neutron quasiparticle random phase approximation (pn-QRPA) theory with improved model parameters. Here I discuss in detail the improved calculation of β±-decay rates for iron isotopes (54,55,56Fe) in stellar environment. The pn-QRPA theory allows a microscopic “state-by-state” calculation of stellar rates as explained later in text. Excited state Gamow–Teller distributions are much different from ground state and a microscopic calculation of decay rates from these excited states greatly increases the reliability of the total decay rate calculation specially during the late stages of stellar evolution. The reported decay rates are also compared with earlier calculations. The positron decay rates are in reasonable agreement with the large-scale shell model calculation. The main finding of this work includes that the stellar β-decay rates of 54,55,56Fe are around 3–5 orders of magnitude smaller than previously assumed and hence irrelevant for the determination of the evolution of Ye during the presupernova phase of massive stars. The current work discourages the inclusion of 55,56Fe in the list of key stellar β-decay nuclei as suggested by former simulation results.  相似文献   

7.
We have measured the strengths of Ca II triplet and Mgb stellar absorption lines in the nuclear and off-nuclear spectra of Seyfert galaxies. These features are diluted to varying degrees by continuum emission from the active nucleus and from young stars. Ca II triplet strengths can be enhanced if late-type supergiant stars dominate the near-IR light. Thus, objects with strong Ca II triplet and weak Mgb lines may be objects with strong bursts of star formation. We find that for most of our sample the line strengths are at least consistent with dilution of a normal galaxy spectrum by a power law continuum, in accord with the standard model for AGN. However, for several Seyferts in our sample, it appears that dilution by a power law continuum cannot simultaneously explain strong Ca II triplet and relatively weak Mgb. Also, these objects occupy the region of the IRAS color-color diagram characteristic of starburst galaxies. In these objects it appears that the optical to near-IR emission is dominated by late-type supergiants produced in a circumnuclear burst of star formation.  相似文献   

8.
As a result of the large body of data available from solar and stellar coronae, our understanding of the mechanisms responsible for the heating of coronal plasmas to temperatures of the order of ~ 108 K has changed. The solar corona is highly structured by magnetic fields and the acoustic shocks which, according to early theories, should have acted as the coronal energy source have not been observed. Einstein Observatory data show moreover that coronae are present in most regions of the H-R diagram. The observed relationship between X-ray luminosity and rotational velocity in dwarf stars from spectral types F to M again suggests an active role for the magnetic fields.The basic picture which is emerging is that coronae in stellar types from F to M are produced because of the interaction of the magnetic field with the convective velocity fields generated in the photosphere resulting in MHD waves or currents which dissipate in the corona. X-ray emission in early type stars cannot be explained with this mechanism and the models which have been proposed for these stars are not yet completely satisfactory.  相似文献   

9.
The evidence for a black hole located at the dynamical center of the Milky Way and identified with the unusual radio source, Sgr A1, is now very compelling. Proper motion and radial velocity surveys of stars clearly demonstrate the presence of a non-luminous concentration of 2.6 × 106 M within a volume of radius ∼0.01 pc centered on Sgr A1. At present, the accretion rate onto this object is rather small, leading to a total accretion luminosity at radio through far-IR wavelengths < 103 L. The accreted material apparently originates in the winds of nearby massive stars. However, neither the stellar nor the gaseous environments are static. The surrounding cluster of massive stars, most lying well within a parsec, is only a few million years old, and is destined to fade substantially within another 107 years. How did such a cluster form in the immediate and tidally stressed vicinity of a supermassive black hole? The circumnuclear disk of gas, which presently has an inner radius of 1 pc, seems destined to migrate inwards and eventually cause a much higher accretion rate onto Sgr A1, with a consequent flurry of new activity. Because the young stars and gas in the vicinity of the black hole interact with each other, the episodes of recurrent activity there can be described in terms of a limit cycle, which effectively controls the growth of the central black hole. In addition to describing the steps of this cycle, we identify several key observations which serve as potential clues to the past activity not only of our Galactic center, but to the activity of gas-rich nuclei in general.  相似文献   

10.
A sample of 52 stars containing dwarfs and giants is subjected to a multidimensional factor analysis. The parameters used are the soft X-ray flux at the stellar surface Fx, the Ca II H+K line-core flux FH+K, the stellar radius and mass. We find a high correlation between Fx and the Ca II H+K excess flux ΔFH+K obtained by subtracting an observational lower-limit flux from FH+K. We conclude that the lower-limit Ca II flux is uncorrelated with the stellar X-ray emission. The common-factor analysis shows that, for the present sample, Fx depends only on ΔFH+K, and not on the stellar radius or mass. All stars included in our analysis follow the relation Fx ∝ Δ1.4H+K over almost four decades in Fx.  相似文献   

11.
The Einstein Observatory and the IUE satellite have provided the observational basis for a major restructuring in theories of coronal formation for late-type stars. For the first time, coronal and transition region emission from a large sample of low mass (1 Mo) dwarf stars has been directly observed, with the unexpected result that essentially all such stars are x-ray emitters. The Sun, which was previously assumed to be typical, is now known to be at the low end of the x-ray luminosity function for solar-type stars. K- and M-dwarfs are observed to have nearly the same luminosity distributions as G-dwarfs and all of these spectral types have a large spread in x-ray luminosity.Observationally, there is a strong correlation between the strength of coronal emission in stars with outer convective zones and the rotation rates of these stars. At the present time we have only the beginnings of a satisfactory theoretical explanation for this correlation; although we are beginning to understand the connection between coronal emission strength and the magnetic field, we do not yet understand the stellar dynamo which generates the magnetic field. Studies of the coronal emission of stars may lead to a better understanding of stellar dynamos.  相似文献   

12.
Binary or multiple stellar systems, constituting almost a third of the content of the Milky Way, represent a high priority astronomical target due to their repercussions on the stellar dynamical and evolutionary parameters. Moreover the spectral study of such class of stars allows to better constrain the evolutionary theories of the Galactic stellar populations. By resolving the members of stellar systems through photometric observations we are able to perform more detailed measurements to infer their mass. In this paper we investigate the feasibility of a cubesat based mission including an optical payload to directly optically discriminate the members of a selected sample of binary systems. The scientific targets, consisting 11?M class dwarf stars binary systems, have been extracted from the already studied Riaz catalogue. These subset has been selected considering the star distance, the members angular separation, and the distance from the Galactic plane (due to limit the background and foreground contamination). The satellite concept is based on a 6 unit Cubesat embedding some commercial off the shelf components and an ad hoc designed optical payload occupying almost 4 units. The optical configuration has been chosen in order to fit the angular resolution requirements, as derived from the target characteristics. Moreover, according to the optical analysis and the computed field of view some requirements on the attitude control system have been inferred and fulfilled by the component selection. The paper is organized as in the following: a brief scientific introduction is made; consequently the project is described with particular attention to the optical design and the standard sub-systems; finally the conclusions are drawn and the future perspectives are investigated.  相似文献   

13.
With the advent of high resolution space observations with high sensitivity, stellar atmospheric research has entered a new phase of rapid development. All stars, and especially hot stars, are now recognized to have atmospheric characteristics that were not suspected before. All hot stars that we can observe with sufficient accuracy show chromospheres and coronae indicative of non-radiative energy fluxes as well as mass loss; these phenomena exhibit a very great range in magnitude among different stars and, in several cases, they are variable in time. These discoveries have pointed out the need for determining the atmospheric structures of hot stars and, ultimately, of determining the mechanisms responsible for the likely common origin of chromospheres-coronae and mass fluxes. This paper will focus on these observational aspects of hot stars -mainly Be stars and OB-normal stars will be treated here- and on the constraints that the observations impose upon models for these stellar atmospheres.  相似文献   

14.
Two soft X-ray images of the Chamaeleon I star forming cloud obtained with the ROSAT Position Sensitive Proportional Counter are presented. Seventy reliable, and perhaps 19 additional, X-ray sources are found. Up to Ninety percent of these sources are certainly or probably identified with T Tauri stars formed in the cloud. Twenty to 35 are probably previously unrecognized ‘weak’ T Tauri (WTT) stars. T Tauri X-ray luminosities range from log , or 102 – 104 times solar levels, with mean in the 0.2–2.5 keV band. The X-ray luminosities of well-studied Chamaeleon cloud members are correlated with a complex of four stellar properties: effective temperature, mass, radius and bolometric luminosity. The spatial distribution, H-R diagram locations of the stars indicate WTT and CTT are coeval. The total premain sequence population of the cloud is likely to be > 100 stars, with WTT stars outnumbering ‘classical’ T Tauri (CTT) stars by 2:1.  相似文献   

15.
This review describes dynamical evidence for massive black holes (BHs) at the centers of galaxies. BHs appear to be a common if not ubiquitous feature of local galactic spheroids, with a mean mass that is roughly 0.5% of the parent stellar spheroid mass. This mass is large enough that the formation and evolution of central BHs has had a significant influence on the inner stellar density profile. For example, low-density, core-type profiles may have been created by the scouring action of binary BH pairs, whose orbital decay ejects stars from the center of the galaxy. Or, BHs may have grown substantially by gas accretion, pulling in surrounding stars and creating the cuspy cores and power laws that are seen in spheroids. If BHs are ubiquitous in galactic spheroids at the above mass ratio, their total local mass density is comparable to that implied by the energy density of QSO photons, suggesting that these local BHs are the long-sought fossil BHs of QSO central engines. However, QSOs are much rarer per unit co-moving volume than local BHs, unless one equates them to just the massive BHs found in rare and massive local spheroids. The resultant BH masses exceed typical QSO BH mass estimates by nearly a factor of 10, suggesting that BHs have grown in mass by roughly that factor since the QSO era. At least some of that growth might have occurred as protogalaxies grew in mass by mergers, and their BHs also merged and grew apace.  相似文献   

16.
We discuss millisecond period brightness oscillations and surface atomic spectral lines observed during type I X-ray bursts from a neutron star in a low mass X-ray binary system. We show that modeling of these phenomena can constrain models of the dense cold matter at the cores of neutron stars. We demonstrate that, even for a broad and asymmetric spectral line, the stellar radius-to-mass ratio can be inferred to better than 5%. We also fit our theoretical models to the burst oscillation data of the low mass X-ray binary XTE J1814-338, and find that the 90% confidence lower limit of the neutron star’s dimensionless radius-to-mass ratio is 4.2.  相似文献   

17.
Observations of cool stars with the Einstein Observatory (HEAO-2) have brought about a fundamental change in our knowledge and understanding of stellar coronae. The existence of X-ray emission from stars throughout the H-R diagram, the wide range of X-ray luminosity within a given spectral and luminosity class, and the strong correlation of X-ray luminosity with stellar age and rotation are among the more significant Einstein results. These results are strong evidence for the influence of stellar dynamo action on the formation and heating of stellar coronae. A discussion of relevant consortium and guest observations will be given. The Hyades cluster, in particular, will serve as an example to demonstrate the usefulness of X-ray observations in the study of stellar activity and coronal evolution.  相似文献   

18.
Measurement of at least three independent parameters, for example, mass, radius and spin frequency, of a neutron star is probably the only way to understand the nature of its supranuclear core matter. Such a measurement is extremely difficult because of various systematic uncertainties. The lack of knowledge of several system parameter values gives rise to such systematics. Low mass X-ray binaries, which contain neutron stars, provide a number of methods to constrain the stellar parameters. Joint application of these methods has a great potential to significantly reduce the systematic uncertainties, and hence to measure three independent neutron star parameters accurately. Here, we review the methods based on: (1) thermonuclear X-ray bursts; (2) accretion-powered millisecond-period pulsations; (3) kilohertz quasi-periodic oscillations; (4) broad relativistic iron lines; (5) quiescent emissions; and (6) binary orbital motions.  相似文献   

19.
The Rho Ophiuchi dark cloud region has been the subject of an extensive guest investigation using the Einstein Observatory. The set of observations comprise 14 IPC fields and 3 HRI fields. The densest part of the cloud has been observed 6 times. Forty seven sources were detected at a level > 3.5 σ and twenty more above 2 σ. The majority of these sources have optical, IR, or even radio continuum counterparts; nine are identified with known T Tauri stars, while several others are identified with stars showing H α in emission. All show a high degree of time variability; flux variations reach factors of 5 in a few hours, or 25 in a day. Apparent luminosities are in the range 10(30) – 10(31)(1) erg.s?1. The possibility that the X-ray variability is due to flares is examined. If this interpretation is correct, one source has been the seat of the largest stellar flare ever recorded in X rays [Lx = 10(32) erg.s?1, Ex ?10(36) ergs-].  相似文献   

20.
Surveys with instruments on the Einstein Observatory have shown that essentially all 0 and B main sequence stars are X-ray sources as are many, if not all, 0B supergiants and Wolf-Rayet stars. The X-ray luminosities are sufficient to explain broad lines from the superionization stages seen in the UV spectra of the stars. High energy resolution spectra from the Solid State Spectrometer are shown to place severe constraints on various models for the location of the X-ray sources in the outer atmospheres of the stars. Coronal and embedded shock models for the X-ray emission are discussed and each is found to have some problems in explaining the X-ray emission of 0B stars. X-ray line emission of Si XIII and S XV in ? Ori is discussed and interpreted as arising from magnetically confined loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号