首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the publication of the last COSPAR International Reference Atmosphere (CIRA 72), large amounts of ozone data acquired from satellites have become available in addition to increasing quantities of rocketsonde, balloonsonde, Dobson, M83, and Umkehr measurements. From the available archived satellite data, models are developed for the new CIRA using 5 satellite experiments (Nimbus 7 SBUV and LIMS, AEM-2 SAGE, and SME IR and UVS) of the monthly latitudinal and altitudinal variations in the ozone mixing ratio in the middle atmosphere. Standard deviations and interannual variations are also quantified. The satellite models are shown to agree well with a previous reference model based on rocket and balloon measurements.  相似文献   

2.
Stratospheric ozone observations by the SAGE and SBUV satellite instruments in March and April, 1979 have been analyzed. All SAGE profiles have been smoothed vertically over 8 km to provide some compatibility with the SBUV vertical resolution. Comparing the zonal mean ozone mixing ratios against smoothed LIMS profiles, it is inferred that SAGE is systematically overestimating ozone by approximately 20% at tropical latitudes at pressures lower than 5 mb and that SBUV is underestimating ozone by approximately 15% at 50–70° latitude at 10 mb. A comparison of the longitudinal variations of ozone by SBUV and SAGE is made and the detectability of planetary waves in ozone is emphasized. The uncorrelated portion of the SAGE variances are found to be approximately consistent with the SAGE noise model. Based on the correlated variances, the amplitudes of the smoothed SAGE planetary waves in ozone are found to be the same, on average, as in the SBUV experiment at mid-latitudes between 1 and 10 mb. Planetary wave detectability is illustrated during two several day periods at mid-latitudes and a persistent and theoretically-consistent relationship between ozone and temperature is noted. These examples, however, indicate that differences between ozone planetary wave amplitudes derived from the two sensors may occur when there is a strong vertical gradient in wave amplitude.  相似文献   

3.
The International Ozone Rocket Sonde Intercomparison (IORI) conducted at Wallops Island during October 1979 provided a unique opportunity to observe ozone variations in great detail from several observing systems. The measurement period lasted 15 days during which time ozone observations were taken by ground-based, balloon, rocket, and satellite instruments. These data provided a unique opportunity for diagnosing regional stratospheric variability over a 2 week period. Examination of NMC analyses indicated that during this period the stratospheric polar vortex moved southeastward bringing air from high latitudes to Wallops Island above 10 mb. A concurrent change was observed in the upper stratosphere ozone fields observed by Nimbus-7 SBUV and in the ozone vertical distribution measured by the rocket soundings. In this study the satellite and rocket measurements are compared. The agreement is good, certainly within the errors of the measurements.  相似文献   

4.
The ozone reference model which is to be incorporated in the COSPAR International Reference Atmosphere (CIRA) is described and compared with other measurements of the Earth's ozone distribution. Ozone vertical structure models from approximately 25 to 90 km are provided combining data from five recent satellite experiments (Nimbus-7 LIMS, Nimbus-7 SBUV, AE-2 SAGE, Solar Mesosphere Explorer (SME) UVS, and SME IR). The results include the latest improvements in the SBUV algorithms using the most recent estimates of ozone cross sections. Also, the latest refinements in SME algorithms are incorporated. These algorithm improvements have improved agreement between the satellite data sets. Standard deviations are provided of monthly zonal means, and an estimate of the interannual variability is given. The models based on satallite data compare well with the Krueger and Minzner mid-latitude model incorporated into the U. S. Standard Atmosphere which is based on rocket and balloon measurements. Other comparisons are shown with Umkehr and more recent balloon data. Models are also provided of total columnar ozone reflecting recent improved estimates of ozone cross section. Information is provided on semiannual and annual variations. Other systematic variations including estimates of diurnal variations in the mesosphere will be included in the CIRA document.  相似文献   

5.
Remote sensing from satellites continues to have a very large impact on the activities of the World Meteorological Organization (WMO) and continues to provide very great benefits to meteorological services throughout the world. Meteorological satellites provide remotely sensed data which can be converted into meteorological measurements such as cloud cover, cloud motion vectors, surface temperature, vertical profiles of atmospheric temperature and humidity, snow and ice cover, ozone and various radiation measurements. The meteorological satellites are part of the global operations of the World Weather Watch Programme which serves as the basic programme of the WMO by supporting other programmes and activities. Satellite measurements are critical to the success of many different components in the World Climate Programme. Special projects are being designed for the 1990s to take advantage of the data from satellite systems designed primarily to provide land or ocean observations. The Applications of Meteorology Programme makes use of remotely sensed data to provide products and services to agricultural, aeronautical and marine activities. The transfer of knowledge and technology in satellite remote sensing applications are important elements of the Technical Co-operation and the Education and Training Programmes.  相似文献   

6.
An Indo-Soviet collaborative experiment on Ozonesonde Intercomparison was conducted at TERLS in March 1983. Thirteen rocket ozonesondes, eleven balloon ozonesondes and seven meteorological rockets were launched from Thumba. The rocket and balloon soundings were supported by on site Dobson spectrophotometric observations, surface ozone measurements as well as measurements with a Volz type filter photometer. The programme has yielded data on ozone vertical profiles from eleven rocketsondes, seven balloon-sondes and four sets of Umkehr observations. The data is studied with a view to intercompare the various sensors.  相似文献   

7.
Since 1978 a number of satellite borne sensors have been used to measure the composition of the earth's atmosphere. These include the LIMS and SAMS instruments on the Nimbus 7 satellite (launched in October 1978), the SAGE instrument on the AEM2 satellite (launched in february 1979) and various instruments on the SME spacecraft (launched October 1981). For many species, these have provided the first abundance measurements with high spatial and temporal resolution and with global coverage. In this paper the composition measurements that have become available from these programs will be reviewed. The paper will then describe some recent studies that have made use of the new data. As it is the exclusive subject of another invited paper, ozone will not be discussed in in any detail.  相似文献   

8.
Ozone reference models are proposed here similar to the Keating and Young 1985 models which were prepared for the new COSPAR International Reference Atmosphere. This paper updates tables provided in the Keating and Young ozone model, giving improved monthly zonal mean total column ozone in 10° latitude increments, improved monthly zonal mean ozone volume mixing ratios (ppmv) from 20 to 0.003 mb in 10° latitude increments, and conversion tables providing ozone vertical structure in other units. Also, a new table is provided giving ozone vertical structure as a function of altitude (from 25 to 80 km), latitude, and month. The models are based on measurements from six contemporary satellite instruments.  相似文献   

9.
根据中国不同地点臭氧探空数据,研究气球炸点臭氧浓度定值(CMR)法、卫星(SBUV和MLS)纬向平均法确定的剩余臭氧Ωres及其对订正因子Cref的影响,同时检验臭氧垂直分布对Cref的贡献.结果显示: CMR法对气球炸点高度依赖性明显,且易高估Ωres使Cref整体低于100%;卫星纬向平均Ωres对气球炸点高度不敏感,但在中国东部的臭氧总量高值区或青藏高原及低纬度臭氧低值地区,Ωres呈现近10DU以上低值,这是经向臭氧总量及其垂直分布差异在卫星遥感数据上的反映.地面到100hPa的对流层臭氧(Ωtro),100~10hPa的平流层臭氧(Ωstr)以及10hPa以上的Ωres对Cref贡献平均分别为(16±3.4)%,(65±2.3)%,(19±3.3)%.表明基于Cref评估或订正探空仪平流层臭氧测值时,需考虑对流层臭氧及确定Ωres方法的影响.卫星纬向平均法,特别是近似实测的SBUV臭氧廓线的值适用于确定Ωres.   相似文献   

10.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   

11.
Measurements of the spectral radiance of the earth's atmosphere from satellites can be related to the vertical structures of temperature and humidity. Derived profiles of these quantities are compared with radiosonde and rocketsonde observations, as well as with horizontal and vertical cross-sections of the atmosphere. In some regions of the atmosphere, particularly where large gradients are found, significant differences occur. A method for overcoming these by use of Typical Shape Functions is discussed. Transmittances computed from theory require modifications which are not well defined, and radiances measured from some satellite instruments disagree with computed values in ways which suggest calibration or instrument problems.  相似文献   

12.
The primary objective of the Scintillation and Tomography Receiver in Space (CITRIS) is to detect ionospheric irregularities from space at low latitude. For this purpose, the satellite receiver uses the UHF and S-Band transmissions of the ground network of Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. CITRIS, developed at the Naval Research Laboratory, differs from the normal DORIS receiver by being able to capture and store the complex amplitude of the 401.25 and 2036.25 MHz transmissions at 200 Hz sample rate. Ground processing of the CITRIS data yields total electron content (TEC) and both phase and amplitude scintillations. With CITRIS flying on the US Space Test Program (STP) satellite STPSat1, 2 years of data were collected and processed to determine the fluctuations in ionospheric TEC and radio scintillations associated with equatorial irregularities. CITRIS flights over DORIS transmitters yield direct measurements of the horizontal plasma density fluctuations associated with equatorial plasma bubbles. Future flights of CITRIS can provide valuable complements to other satellite instruments such as GPS occultation receivers used to estimate vertical electron density profiles in the ionosphere.  相似文献   

13.
The accuracy of atmospheric transmittances is important in remote sensing applications. In this paper the atmospheric ozone transmittances in the 1042 cm?1 ozone band were calculated for different temperatures and ozone profiles using line-by-line integration method. The absorption line parameters were taken from McClatchey's line parameter compilation. The transmittances were used to derive the main characteristics of the atmospheric ozone profile and the total ozone amount from radiance measurements of Meteor satellites.  相似文献   

14.
The Geospace Double Star Project (DSP) consists of two small satellites operating in the near-earth equatorial and polar regions, respectively. The goals of DSP are: (1) to provide high-resolution field, particle, and wave measurements in some important near-earth active regions which have not been covered by current ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate the trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle events,as well as the responses of geospace storms to solar activities and interplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To realize the above goals, the equatorial satellite TC-1 and the polar satellite TC-2 will accommodate, respectively, eight instruments on board. TC-1was launched successfully in December 2003 while the polar satellite (TC-2)will be launched in July 2004. The orbit of the equatorial satellite TC-1 consists of a perigee at 550 km, an apogee at 60 000 km, and an inclination of about 28.5; while the orbit of the polar satellite will have a perigee of 700 km, an apogee of 40 000 km, and an inclination of about 90. The two satellites will take coordinated measurements with Cluster Ⅱ and will first form a "six-point exploration" in geospace.The operational status of TC-1 are introduced in this paper.  相似文献   

15.
The Stratospheric Sounding Unit (SSU) is part of the TOVS (TIROS Operational Vertical Sounder) on NOAA operational meteorological satellites. SSU measurements can be validated by comparison with temperature measurements from colocated rocket sondes. Systematic differences are found which vary with rocket station and sonde and are a function of height. However, these measurements are not adequate to define the performance of individual SSUs to a precision which would allow the observations from different SSUs to be combined in the study of diurnal and semidiurnal tides and of long term trends in stratospheric temperature. Instead this is achieved by detailed radiometric and spectroscopic investigation of each individual SSU, both prior to launch and during its operational life. Using the techniques descirbed, it is demonstrated that measurements from different SSUs can be combined with a relative error of less than 0.2K in equivalent brightness temperature.  相似文献   

16.
During the Energy Budget Campaign, several profiles of the density and temperature of the upper atmosphere were obtained. The measurements were made using rocket-borne instrumentation launched from ESRANGE, Sweden and Andoya Rocket Range, Norway during November and December, 1980. The techniques included meteorological temperature sondes, passive falling spheres, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data within the altitude range from 20 km to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the oscillations and fluctuations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. The geomagnetic storm conditions may be associated with enhanced wave activity and heating observed in the lower thermosphere.  相似文献   

17.
The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.  相似文献   

18.
A review of the latest published results concerning the accuracy of satellite derived sea surface temperature (SST) estimation is presented. Two types of platforms are considered : orbiting satellites and geosynchronous satellites and the accuracies that may now be expected from such systems are reported. This review emphasizes the impressive improvement in global mapping of SST obtained from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA's operational polar satellites. Tests of the AVHRR SST's against a high reliability data set consisting of buoys, bathythermographs and research ship reports indicate biases of < 0.1°C and RMS differences of < 0.75°C (McClain [1]). Particular attention is also paid to a method adding along track scanning capability to the present multichannel AVHRR technique. This method is demonstrated owing to the coupling of an orbiting satellite (TIROS-N) and a geosynchronous satellite (METEOSAT). Another type of coupling of two such platforms is also presented in connection with the advent of geostationary satellites equipped with a vertical sounding capability, such as GOES-4.  相似文献   

19.
A general strategy for detection of climatic changes of stratospheric temperatures is discussed in the light of expected short-term and long-term natural and spurious (instrumentally-induced) variability. The effects of the brevity of both the radiosonde record and the satellite sounding record are stressed, and the need is emphasised for homogeneous time-series from satellites as well as from sondes.The general principles are illustrated by means of an attempt to detect climatic changes in the extratropical upper troposphere and lower stratosphere using radiosonde data for approximately the past 25 years. It is shown that, even in the absence of instrumental shortcomings, a further 35 years of radiosonde data, or 20–25 years of satellite sounding data, are needed for detection of temperature trends of the size indicated by global circulation models for the present rate of increase of concentration of atmospheric carbon dioxide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号