共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to measure tropospheric aerosols over ocean surfaces has been demonstrated using several different satellite sensors. Landsat data originally showed that a linear relationship exists between the upwelling visible radiance and the aerosol optical thickness (about 90% of this thickness is generally in the lowest 3 km of the atmosphere). Similar relationships have also been found for sensors on GOES, NOAA-5 and NOAA-6 satellites. The linear relationship has been shown theoretically to vary with the aerosol properties, such as size distribution and refractive index, although the Landsat data obtained at San Diego showed little variability in the relationship. To investigate the general applicability of the technique to different locations, a global-scale ground-truth experiment was conducted in 1980 with the AVHRR sensor on NOAA-6 to determine the relationship at ten ocean sites around the globe. The data for four sites have been analyzed, and show excellent agreement between the aerosol content measured by the AVHRR and by sunphotometers at San Diego, Sable Island and San Juan, but at Barbados, the AVHRR appears to overestimate the aerosol content. The reason for the different relationship at the Barbados site has not been definitely established, but is most likely related to problems in interpreting the sunphotometer data rather than to a real overestimation by the AVHRR. A preliminary analysis of AVHRR Channel 1 (0.65 μm) and Channel 2 (0.85 μm) radiances suggest that useful information on the aerosol size distribution may also be obtained from satellite observations. 相似文献
2.
Since 1978 a number of satellite borne sensors have been used to measure the composition of the earth's atmosphere. These include the LIMS and SAMS instruments on the Nimbus 7 satellite (launched in October 1978), the SAGE instrument on the AEM2 satellite (launched in february 1979) and various instruments on the SME spacecraft (launched October 1981). For many species, these have provided the first abundance measurements with high spatial and temporal resolution and with global coverage. In this paper the composition measurements that have become available from these programs will be reviewed. The paper will then describe some recent studies that have made use of the new data. As it is the exclusive subject of another invited paper, ozone will not be discussed in in any detail. 相似文献
3.
The methods used to determine the aerosol optical depth as a function of wavelength are briefly described and discussed. Some results from the operational network of the World Meteorological Organization and other, more research oriented studies, are reviewed and critically analysed to assess the reliability and accuracy of such determinations and their value as ground truth measurements for space applications. 相似文献
4.
Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra and Aqua satellites, for the period of 2002–2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed. 相似文献
5.
Integrity is the ability of Global Navigation Satellite Systems (GNSS) to detect faults in measurements and provide timely warnings to users and operators when the navigation system cannot meet the defined performance standards, which is of great importance for safety of life critical applications. Compared with both Receiver Autonomous Integrity Monitoring (RAIM) and ground based GNSS Integrity Channel (GIC) methods which are widely adopted nowadays, the Satellite Autonomous Integrity Monitoring (SAIM) method can be used to monitor orbit/ephemeris and clock errors, and has advantages in monitoring orbit and clock quality and providing instantaneous responses when faults happen. 相似文献
6.
Data from the Massachusetts Institute of Technology Lincoln Laboratory Long Range Imaging Radar (known as the Haystack radar) have been used in the past to examine families of objects from individual satellite breakups or families of orbiting objects that can be isolated in altitude and inclination. This is possible because, for some time after a breakup, the debris cloud of particles can remain grouped together in similar orbit planes. This cloud will be visible to the radar, in fixed staring mode, for a short time twice each day, as the orbit plane moves through the field of view. There should be a unique three-dimensional pattern in observation time, range, and range rate which can identify the cloud. Eventually, through slightly differing precession rates of the right ascension of ascending node of the debris cloud, the observation time becomes distributed so that event identification becomes much more difficult. 相似文献
7.
Ocean circulation is an important element in many of the large scale experiments planned for the World Climate Program. Satellite infrared data, particularly that from polar oribiting NOAA weather satellites, have demonstrated a capability for showing flow patterns in the ocean in areas where western boundary currents or upwelling provide sufficient thermal contrast. Many areas, however, have thermal contrasts too low to be mapped reliably and other tracers are needed.Images showing variations in the colour (spectral reflectance) of the surface layers of the ocean, from the Coastal Zone Color Scanner on Nimbus 7, have provided excellent examples of flow patterns traced by movements of water bodies having different phytoplankton content. Examples are presented here which show coastal flow patterns off the British Columbia coast, Gulf Stream flow between the New England sea mounts and the form of the Alaskan Stream.Such imagery has only recently become available, and could contribute greatly to a more detailed understanding of ocean circulation. The CZCS was launched in 1978 and is slowly degrading in operation. It appears that a six-year gap in supply of ocean colour imagery may now occur before a replacement can be launched. A large back-log of data remains to be analysed. The CZCS was the first to make this type of measurement and it seems certain that improved sensor designs could increase the value of the data. One such design being developed in Canada makes use of two dimensional arrays of optical detectors to provide greatly increased spectral resolution, and improved sensitivity. 相似文献
8.
A radiative-convective equilibrium model is developed and applied to study cloud optical thickness feedbacks in the CO 2 climate problem. The basic hypothesis is that in the warmer and moister CO 2-rich atmosphere, cloud liquid water content will generally be larger than at present, so that cloud optical thickness will be larger too. For clouds other than thin cirrus, the result is to increase the albedo more than to increase the greenhouse effect. Thus the sign of the feedback is negative: cloud optical properties alter in such a way as to reduce the surface and tropospheric warming caused by the addition of CO 2. This negative feedback can be substantial. When observational estimates of the temperature dependence of cloud liquid water content are employed in the model, the surface temperature change due to doubling CO 2 is reduced by about one half. 相似文献
9.
Combined use of different satellite sensors are known to improve retrievals of aerosol optical depth (AOD). In this study, we propose a new method for retrieving Multi-angle Imaging SpectroRadiometer (MISR) AOD data supported by Moderate Resolution Imaging Spectroradiometer (MODIS) data in Jiangsu Province, China, over the period of 2016–2018 using MODIS L1B, bidirectional reflectance distribution function (BRDF), MISR 1B2T, and ground-measured AOD data. This method is based on the surface reflectance determined by the MODIS V5.2 algorithm. Through the observation angle and spectral conversion between different sensors, the MISR AOD can be obtained. The correlation coefficient (R) and root-mean-square error (RMSE) between the retrieved MISR and ground-measured AOD data varied between different seasons. The accuracy of the MISR AOD retrieval was notably improved after correcting the MISR surface reflectance. Therefore, the method proposed in this study is feasible for the retrieval of MISR AOD supported by MODIS data, and will be applicable to atmospheric environmental monitoring over large areas in the future. 相似文献
10.
This study aimed to investigate the performance of genetic algorithms coupled with partial least squares (GA-PLS) modeling of spectral reflectance in retrieving equivalent water thickness (EWT) at leaf and canopy level. A genetic algorithm was used to identify a subset of spectral bands sensitive to the variation in EWT, and PLS was then applied to relate the identified bands to EWT values. GA-PLS was applied to leaf level reflectance available from LOPEX dataset, and canopy data includes reflectance simulated by a leaf radiative transfer model PROSPECT and a canopy radiative transfer model SAILH and acquired by airborne visible/infrared imaging spectrometer (AVIRIS). The results indicate that GA-PLS has the capability of retrieving EWT from leaf and canopy reflectance, and achieved good estimation accuracy, i.e. low root mean square errors (RMSE) and high squared correlation coefficients ( R2). For the retrieval at leaf level, the estimation accuracy can be as good as RMSE = 0.0019 g/cm 2 and R2 = 0.939 or better. For the retrieval at canopy level, the model accuracy is RMSE = 0.0061 g/cm 2 and R2 = 0.966 or better when PROSPECT-SAILH simulated reflectance was used; when AVIRIS image spectra were used, the model accuracy is RMSE = 0.0094 g/cm 2 and R2 = 0.8734 for the calibration, and RMSE = 0.0132 g/cm 2 and R2 = 0.7756 for the validation. These results from GA-PLS modeling support the conclusion that GA-PLS has the potential to be applied to AVIRIS, Hyperion and HyMap imagery for retrieving EWT. The selected bands for the AVIRIS datasets differ from those for the LOPEX and PROSPECT-SAILH simulated datasets, and this inconsistence of the selected bands for different datasets indicates that the GA-PLS method has the advantage of tuning the optimum bands for PLS regression and accommodating the effects of confounding factors. 相似文献
12.
The paper deals with a new method for simultaneous determination of cloud top height and effective cloud cover, using infrared radiance data of satellite-borne instruments. These cloud properties derived from the Selective Chopper Radiometer on the Nimbus 5 satellite are compared with nearly simultaneous observations by radiosondes and with satellite images. Encouraging results for Central-Europe during January, April, July, August and October 1974, as well as numerical simulations indicate that the method proposed here, would be useful also for global application. Another advantage of the described procedure are the small amount of computing time, and that no other data are required than 3 of infrared channel values, for each sounded spot. 相似文献
13.
The CESR Toulouse - IKI Moscow particle instrument package aboard the AUREOL-3 satellite consists of a complete set of charged particle spectrometers which measure electron and ion fluxes from 15 eV to 25 keV in 128 steps and in 11 directions. In addition, 4 channel spectrometers (2 electron and 2 ion channels in parallel) allow high time resolution measurements (up to 10 msec) with onboard calculation of auto and cross correlation functions. For higher energies (40 – 280 keV), solid-state spectrometers are used to measure electron and proton fluxes in 4 channels in parallel. In addition, two Geiger counters are used for the determination of the trapping boundaries. Two mass-energy ion spectrometers (1 to 32 A.M.U., 0.02 – 15 keV) are placed with viewing angles which allow a distinction between nearly isotropic auroral proton precipitation and conical beams accelerated in the auroral ionosphere. Auroral and airglow photometry is performed aboard the AUREOL-3 satellite by a set of 3 parallel directed photometers with tiltable interference filters for 6300 Å, 4278 Å and Doppler shifte H β emissions. Various modes of energy, angular and mass scanning, correlation function calculation and various Soviet and French telemetry regimes provide the possibility of choosing the sequences of measurements according to particular experimental programs along the orbit. Finally, examples of data from inflight measurements using the above instruments are presented and briefly discussed, showing several interesting features. 相似文献
14.
The reflected near infrared solar radiation observed from space above the oceans is due mainly to the atmosphere scattering, as the ocean surface is nearly black. The molecular Rayleigh contribution is also minimized at infrared wavelengths and it can be evaluated. It is shown that the degree of polarization is much more sensitive to the aerosol properties than the radiance. Measurements of polarization at two wavelengths and with an angular scanning are simulated and an inversion algorithm is proposed. It aims at finding an “equivalent aerosol model,” which reproduces the optical thickness and the asymmetry factor of the actual aerosol at all wavelengths in the solar spectrum. 相似文献
15.
Drought is an important natural disaster that causes devastating impacts on the ecosystem, livestock, environment, and society. So far, various remote-sensing methods have been developed to estimate drought conditions, each of which has advantages and restrictions. This study aims to monitor the real-time drought indices at the field scales via the integration of various earth observations. Our proposed method consists of two steps. In the first step, the relationships between long-term standardized precipitation indices (SPI) derived from PERSIANN-CDR rainfall data and two drought-dependent parameters derived from MODIS products, including normalized NDVI and soil-air temperature gradient, are obtained at the spatial resolution of PERSIANN-CDR grid (approximately 25 km). As the next step, the corresponding relationships are applied to estimate the drought index maps at the spatial resolution of MODIS products (1 km). Numerous analyses are carried out to evaluate the proposed method. The results revealed that, from various drought indices, including SPIs of different timescales (1, 3, 6, and 12-months), SPI-3 and SPI-6 are more appropriate to the proposed method in terms of correlation with temperature and vegetation parameters. The findings also demonstrate the competency of the proposed method in estimating SPI indices with average RMSE 0.67 and the average correlation coefficient of 0.74. 相似文献
16.
介绍一种将姿控系统和星务管理系统融为一体的设计思想,它节约了星载机资源,提高了系统信息处理的实时性,很好地体现了小卫星的质量轻、体积小、成本低的优势。对姿控系统的硬件组成、卫星的飞行模式和控制策略、星务管理软件的体系结构和总结设计思想、姿控软件的星务管理软件的接口设计等内容做了重点讨论。 相似文献
17.
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging. 相似文献
18.
The stratospheric and mesospheric sounder (SAMS) was launched in October 1978 on the NIMBUS 7 satellite. Between then and its eventual failure in June 1983 the instrument was used to collect over four years of radiance data from which atmospheric temperature and the abundances of a number of minor constituents have been derived. The paper will present fields of CH 4 and N 2O between 50S and 70N derived from SAMS data for the period 1979–1981. Global distributions of CH 4 and N 2O will be presented in various forms and the observed seasonal changes and interannual variability will be described. The paper will compare the SAMS CH 4 and N 2O data with model predictions and will comment upon some other areas of interest. 相似文献
19.
<正>卫星产业是典型的战略性新兴产业,推动发达国家卫星产业高速发展的主要力量是创新,我国卫星产业发展创新需要从企业和政府两个层面同时推进。1引言卫星产业由卫星制造、卫星发射,卫星服务和地面终端设备制造四个部分组成,有通信、导航和遥感三大应用领域。2014年,全球卫星产业总产值达2032亿美元。其中,四大部分分别占8%、3%、61%和28%。2004-2013年,全球卫星产业平均年增长 相似文献
20.
Recent studies of the vegetation fluorescence show that it can be successfully used as an intrinsic indicator of plant photosynthetic activity. With respect to the vegetation spectral reflectance, the chlorophyll (Chl) fluorescence is more specific as an observable of basic biophysical processes in the plant cells. Laser induced fluorescence is widely used in near range remote sensing, but it is not suitable for the global monitoring of vegetation. Decades of active fluorometry studies have collected useful information of leaf reaction to natural and anthropogenic stress. Still the passive fluorescence, the one that could be registered from satellite orbit has still to prove its advantage over widely used reflectance signature. The weakness of the signal and the lack of experience with passive fluorescence measurements require extensive technical, theoretical and experimental studies. New imaging fluorometres are to be designed for measuring steady state fluorescence in controlled and natural conditions. In order to compare reflectance and steady state fluorescence sensitivity to stress impact, a set of experiments have been conducted under controlled illumination conditions in a bio-chamber, designed by the author’s team. The equipment allows plant vitality to be monitored both by passive fluorescence and spectral reflectance imaging. Different types of stress factors (heat and drought stress, acid impact) were investigated to demonstrate equipments ability in monitoring changes of fluorescence signal. Selected fluorescence images of foliage illustrate an early detection of plant dysfunction and the temporal and spatial spreading of the stress impact. Analysis shows that fluorescence imaging of green plants can be developed as a highly effective early warning remote sensing method, which could have application for an ecosystems’ monitoring along with high-spectral reflectance imagery. 相似文献
|