首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The event was observed onboard the space probe Venera 11 at a heliolongitude close to 57°. Electron spectra in the energy range from 60 to 2100 keV are determined and compared with X ray spectra. As a result it was found that conditions of the “thin target” model were realized in the April 13, 1979 flare. Estimates of the total number of accelerated electrons and the energy of the flare are presented.  相似文献   

2.
According to the definition of the homology (optical) kept in reference, the homologous flares (HFl) may be observed wherever flares occur. The supposed supplementary preflaring conditions to have HFl may be either that the preflaring conditions have not been destroyed by the first flare (and then what mechanism has stopped the first and triggered the second ?) or that the preflaring conditions have been destroyed and rebuilt (and then, how ?). The analysis of data related to some selected active regions AR by the members of the working group, and the earlier works on HFl, may be used simultaneously to investigate the differences between one set of HFl and the others, the location of their sites and the evolution of HFl productive AR. This study brings the appearance of new footpoints from one flare to the following, the behaviour of cool arches (surging arches) leading to information on the changes of the magnetic configuration, and to peculiar characteristics of HFl, oif 2nd, 3rd in the time order concerning the chromospheric transition zone or coronal regions. The time delay between two consecutive homologous flares appears very quickly as an essential parameter to study homology. It was found that every set of flares (same type of site) is able to produce “rafales” of homologous flares, i.e. two, three, four, oir more flares with Δt in the range of one hour or less. The observations show no great chantes in macroscopic photospheric patterns (B, V) during this H flaring period. They lead to compare their temporal variation curves of flare brightness. A quantitative brightness parameter of homology relation has been defined. Some scale changes have also been detected in the dynamic spectrum of the site, and it is in good agreement with a very interesting theoretical suggestion made by P. Sturrock to produce such “rafales”. It may be shown that the closely consecutive time-homologous flares (CCHF) or “rafales” represent a good tool to analyse the critical conditions related to the origin and the amount of energy, mechanism of storage and release, necessary and, perhaps, sufficient conditions. New statistical results, applied to the different selected homologous flare active regions are presented and show the existence in homologous flaring areas of a “pivot” of previous filaments interpreted as a signature of an anomaly in the Solar rotation.  相似文献   

3.
The author's finding that active regions are sources of relatively slow and approximately radial quasistationary corpuscular streams is confirmed by using the fact that active regions are closely connected with coronal holes. Furthermore, attention is paid to numerous papers according to which the active regions characterized by enhanced and prolonged chromospheric (flare) activity are also sources of quasistationary corpuscular streams. Velocities of gases in these streams are higher than velocities of gases in streams from “quiet” active regions.On the basis of all these studies it is suggested that the origin of outflow of plasma from “quiet” active regions and from active regions with enhanced flare activity is the same and is due to some continuous non-stationary processes in the active regions. The velocity of gases in all these streams grows with increasing continuous flare activity in the active regions.It is concluded that quasistationary corpuscular streams from active regions with enhanced flare activity are important sources of cosmic rays from the sun.  相似文献   

4.
The energy needed to power flares is thought to be stored in the coronal magnetic field. However, the energy release is efficient only at very small scales. Magnetic configurations with a complex topology, i.e. with separatrices, are the most obvious configurations where current sheets can form, and then, reconnection can efficiently occur. This has been confirmed for several flares computing the coronal field and comparing the locations of the flare loops and ribbons to the deduced 3-D magnetic topology. However, this view is too restrictive taking into account the variety of observed solar flaring configurations. Indeed, “Quasi-Separatrix Layers” (QSLs), which are regions where there is a drastic change in field-line linkage, generalize the definition of separatrices. They let us understand where reconnection occurs in a broader variety of flares than separatrices do. The strongest electric field and current are generated at, or close to where the QSLs are thinnest. This defines the region where particle acceleration can efficiently occur. A new feature of 3-D reconnection is the natural presence of fast field-line slippage along the QSLs, a process called “slip-running reconnection”. This is a plausible origin for the motions of the X-ray sources along flare ribbons.  相似文献   

5.
Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic flux region within a complex of active regions, Hale No. 16918. This analysis was done as a part of a continuing study of the circumstances associated with flares in Hale Region 16918, which was designated as an FBS target during the interval 18 – 23 June 1980. We studied the initiation and development of both major and minor flares in Hα images in relation to the identified potential flare sites at the boundaries of the growing flux region and to the general development of the new flux. This study lead to our recognition of a spectrum of possible relationships of growing flux regions to flares as follows: (1) intimate interaction with adjacent old flux — flare sites centered at new/old flux boundary, (2) forced or “intimidated” interaction in which new flux pushes old field having lower flux density towards a neighboring old polarity inversion line where a flare then takes place, (3) “influential” interaction — magnetic lines of force over an old polarity inversion line, typically containing a filament, reconnect to the new emerging flux; a flare occurs with erupting filament when the magnetic field overlying the filament becomes too weak to prevent its eruption, (4) inconsequential interaction — new flux region is too small or has wrong orientation for creating flare conditions, (5) incidental — flare occurs without any significant relationship to new flux regions.  相似文献   

6.
The observation of large solar flares on high altitude balloons requires long duration balloon flights because large flares are infrequent and cannot be predicted with enough reliability and lead time to allow a conventional balloon to be launched and reach altitude before the flare occurs. With the many weeks at float altitude expected for a long duration flight, the probability of “catching” a large flare during solar maximum becomes reasonably high and the study of phenomena which heretofore have required a satellite become accessible to a balloon platform. One example of this type of experiment is the observation of neutrons produced by the interaction of flare accelerated nucleons with the solar atmosphere. Because the neutrons are produced immediately by the flare accelerated particles and are unaffected by their transmission through the upper solar atmosphere and the intervening magnetic fields, their observation at 1 A.U. will provide direct information on the flare acceleration process. Specifically, a measurement of the neutron energy and time spectra will yield the energy spectrum of the charged nucleons in the interval 50 to 500 MeV/amu, the charged particle anisotropy, the height of the acceleration region for limb flares, and information on the two-stage acceleration process. Because the γ-ray spectrum is also sensitive to these factors, a combined neutron and γ-ray measurement will provide a much more stringent test of flare models than either done separately. CWRU and the University of Melbourne have designed the EOSCOR (Extended Observation of Solar and Cosmic Radiation) detector to have the necessary sensitivity to detect neutrons from a flare 0.1 the size of the 4 Aug. 1972 event and to be compatible with the constraints of the long duration balloon system. The detector has been test flown on short duration balloon flights and calibrated at En = 38, 58, and 118 MeV. It is planned to launch it on a long duration balloon flight from Australia in December 1982 when simultaneous γ-ray observations will be possible with the SMM and/or HINTORI satellites.  相似文献   

7.
An X-ray flare was observed from Algol using the low and medium energy detectors on the European Space Agency's EXOSAT observatory. Spectra obtained during the flare are well fitted by thermal continua while an Fe XXV emission feature was also detected. The strength of this feature indicates a cosmic abundance for iron. The data indicate that the flare occurred in a loop of height approximately 0.25 of the K star radius & with a magnetic field >300 Gauss.  相似文献   

8.
A two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. This model has already been used with some success for simulation of some major features of type II shocks and white light coronal transients. In this presentation, we have studied the effects of initial magnetic topology and strength on the formation of MHD shocks. We consider the plasma beta (thermal pressure/magnetic pressure) as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfvén Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. We suggest that this model (computed self-consistently) provides the shock wave and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.  相似文献   

9.
1980年11月6日耀斑后冕拱(Post-flare coronal arch)在母耀斑(AR2779)开始后3小时形成, 并在形成后11小时和25小时两次激活。两次激活均由双带耀斑的增长环系所致。本文提出了激波加热和Petschek重连是该冕拱有效的激活机制。导出并求解了考虑辐射损失、热传导、激波加热和Petschek重连加热的冕拱能量方程。理论计算结果与Svestka根据SMM空间资料所给出的该冕拱的激活曲线基本符合。   相似文献   

10.
利用1992年10月27日耀斑极为完整的高质量观测资料,通过对可见光、软X射线和硬X射线图像和光谱的综合分析,诊断耀斑过程中的热与非热性质,结果表明,在这个事件中,热与非热过程并存且在时空演化上呈现不同的特征  相似文献   

11.
The homologous flares observed in the same region of a spotgroup testify the existence and the duration of a permanent instability. However, they also attest that the general magnetic configuration is not destroyed by these flares and that it changes slowly up to the death of the site.The study of every flaring sites where more than ten flares occur has been performed in Meudon for the 1974–1980 period.One hundred and sixty-six sites have been analysed from the rotation where the A.R. is observed up to five rotations ahead. The basis of the study are the “Synoptic Maps”. A relation is found between the presence of crossing of “filament-phantom” corridors and the location of the homologous flare sites.1  相似文献   

12.
太阳耀斑显著的热和非热事件的统计特征   总被引:1,自引:1,他引:0  
本文利用GOES卫星和SMM卫星软、硬X射线耀斑观测资料,分析耀斑中软、硬X射线辐射流量的分布,发现太阳耀斑存在着显著的热事件(PT事件)和显著的非热事件(PNT事件),它们主要特征是:(1)PT事件为缓变型耀斑,PNT事件为脉冲型耀斑;(2)PT事件的硬X射线谱较软,PNT事件能谱较硬;(3)PNT事件非热能量释放速率比PT事件快3—10倍;(4)耀斑发展趋缓慢,PT事件中软X射线峰值流量越大;(5)耀斑中PNT事件约占60%,PT事件约占40%.最后定性讨论了产生PT和PNT事件的可能机制.   相似文献   

13.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

14.
Observational studies of the pre-cursor phase of solar flares have shown that there are many and varied signatures that may or may not indicate the probable onset of a flare. Combining data from Yohkoh, SOHO and TRACE and more recent observations from RHESSI, SOHO and TRACE we, investigate the relationships between the different manifestations of pre-flare behaviour in two solar flares with a view to determining how they are related to the subsequent flare energy release. We find that in one case the preflare activity seems strongly related to the subsequent flare and probably represents a build-up of energy in the active region prior to flare onset. The second case we find to be less clear cut suggesting that significant further work remains to be done in order to determine which pre-flare signatures are most useful in indicating the build-up to flare onset.  相似文献   

15.
This paper deals with Solar Maximum Year observations that can shed light on the roles of energetic electron beams and thermal conduction in solar flares. The emphasis is on X-ray and UV images and on the interpretation of chromospheric spectra. The format is that of a one-sided debate advocating the view that most of the flare energy that reaches the chromosphere is transferred by thermal conduction rather than by energetic electron beams. Reference is made to papers offering opposing points of view on this still controversial question.  相似文献   

16.
本文计算、分析了太阳耀斑加速电子在日冕中传输时激发的等离子体尾场的效应,认为耀斑电子的高能成份激发的尾场,能够加速低能耀斑电子,低能耀斑电子的能量增值可达几十keV至上百keV,这种尾场加速将软化约100keV以下的能量范围内(探测阈之上)的耀斑电子能谱。结合考虑尾场效应,本文提出了太阳耀斑加速电子从加速区到形成电子事件之间的能谱演化模式,说明了太阳纯电子事件的双幂律电子能谱和太阳质子-电子事件的单幂律电子能谱的形成,认为两类事件的电子能谱差异为耀斑电子日冕传输中不同程度的尾场效应所致,前者尾场效应弱,电子能谱呈双幂律,后者尾场效应较强,电子能谱为单幂律谱。   相似文献   

17.
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed.  相似文献   

18.
本文利用云南天文台耀斑Hα巡视观测、活动区白光照相及速度场资料,结合SMM的X射线资料和北京天文台的射电观测资料,对1980年7月14日日面3B级大耀斑进行了综合研究。对照耀斑过程的磁流浮现(EMF)模型,我们分析了活动区的形态变化特征,估算了耀斑释放的磁能、耀斑过程的特征时间及耀斑爆发时加速的电子总数和加速电子的平均能量。结果表明:(1)耀斑过程的EMF模型与观测结果基本符合,可以认为EMF模型能够较好地说明耀斑的物理过程。(2)根据对速度场资料及耀斑产生位置的分析,初步认为电流片可能位于速度中性线与磁中性线的交点处及其附近,或速度中性线与暗条的交点处及其附近[3]。(3)观测和计算表明,硬x射线爆是由电流片中加速的高能非热电子所产生,而软X射线爆则由耀斑区的高温等离子体的热轫致辐射所产生。   相似文献   

19.
Hard X-ray observations provide the most direct diagnostic we have of the suprathermal electrons and the hottest thermal plasma present in solar flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is obtaining the most comprehensive observations of individual solar flares ever available in hard X-rays. For the first time, high-resolution spectra are available for a large number of flares that accurately display the spectral shape and its evolution and, in many cases, allow us to identify the transition from the bremsstrahlung X-rays produced by suprathermal electrons to the bremsstrahlung at lower energies emitted by thermal plasma. Also, for the first time, images can be produced in arbitrary energy bands above 3–4 keV, and spectra of distinct imaged components can be obtained.I review what we have learned from RHESSI observations about flare suprathermal electron distributions and their evolution. Next, I present computations of the energy deposited by these suprathermal electrons in individual flares and compare this with the energy contained in the hot thermal plasma. I point out unsolved problems in deducing both suprathermal electron distributions and the energy content of the thermal plasma, and discuss possible solutions. Finally, I present evidence that electron acceleration is associated with magnetic reconnection in the corona.  相似文献   

20.
A multidisciplinary study of this solar-interplanetary event is summarized by two main points: this flare was an incident in a process that began days before the flare, and continued after the flare; and the chain of events can be interpreted most simply in terms of energy input over scales of time and space that are large compared to the flare seen in the light of Hα. In support of these points, 5 aspects of the flare are described here: (1) hours before the flare, slow changes in coronal structure were associated with radio continuum emission, suggesting large-scale magnetic-field changes and the presence of energetic electrons; (2) long-lived X-ray loops require sustained energy input for at least an hour after the flare start; (3) interplanetary disturbance near earth is probably related to this limb flare, although the (expected) absence of a shock makes identification uncertain; (4) the coronal mass ejection overlay decaying magnetic field; (5) speed derived from frequency drift of the type II radio burst in the low corona, and from the travel time of the disturbance to 1 a.u., are about twice as great as the observed speed of the coronal mass ejection and of the disturbed solar-wind speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号