首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我国现行测控系统的基带信号和基带设备都是分立的,统一测控系统是采用频分多路体制,它们存在多副载频相互干扰、测距精度和无模糊距离难于提高、抗干扰性差、设备复杂等缺点。建议我国新一代航天测控系统采用时分多路、伪码扩频体制。新的体制不仅能克服上述缺点,而且还能与我国即将研制的数据中继卫星系统兼容,便于开展国际合作。研制新体制测控系统需要解决扩频技术、扩频伪码距离、高速数据处理、数据传输等关键技术,国外已  相似文献   

2.
提出了多载波码分多址测控通信系统的概念,该系统不但能完成伪码精确测距,而且能进行高速数据传输。本文对实施方案作了探讨,并对其关键技术进行了分析。  相似文献   

3.
针对静态扩频测控信号的大动态信息加载问题,提出了一种基于数字化处理的高精度时域加载方法。该方法对测距扩频码采用"存储—内插—查表—抽取"的方式加入动态信息,对载波采用调整幅度变化的方式加入动态信息。最后对该方法进行综合仿真:即用高精度时域加载方法得到的载波信号重新调制测距扩频码,得到含有动态信息的数字信号。仿真分析表明,该方法能在不改变原始信号采样率的前提下,实现扩频测控信号大动态信息高精度加载。  相似文献   

4.
超宽带技术是一项新兴的无线通信技术,具有极其广阔的发展前景,但目前仅用于室内短距离通信,少见用于航天测控系统。为了将超宽带技术应用于测控系统中,以模糊函数为工具,对脉冲超宽带信号的测量性能进行分析。首先推导矩形脉冲串信号和载波调制矩形脉冲串信号的模糊函数,并对其模糊特性进行仿真分析。在此基础上,主要针对用于测控系统的伪码调制脉冲超宽带信号,利用其模糊函数分析其测距测速性能。结果表明:该超宽带信号具有良好的测距测速性能,其最大无模糊距离为1个伪码周期,最大无模糊多普勒频率为脉冲重复频率的倒数;单脉冲宽度越窄,其测距性能越好而测速性能越差。  相似文献   

5.
针对较高码率的多目标测控通信需求,提出了一种基于超宽带和扩频技术的解决方案,给出了其多用户的调制解调方法,分析了其在多用户情况下的误码率性能。针对超宽带阵列信号的特点,给出了基于时延-相位-幅度修正的信号处理方法。该解决方案可以利用超宽带纳秒级的窄脉冲,实现1m以内的测距定位精度,其研究在航天测控领域有较大的现实意义。  相似文献   

6.
针对应答机采用不同的接收信号功率控制方式,对下行测距调制度、残留遥控调制度以及转发噪声调制度的情况进行了理论分析,得到了各种情况下的调制度数学模型,可供读者在航天工程的测控链路设计及应答机设计时参考。  相似文献   

7.
在微波统一测控系统中,地面对航天器的跟踪主要是通过无线电波传播来完成。电波在穿过电离层时,其传播速度和角度都要发生变化,从而影响外测精度。载波相位在电离层中以相速度传播,而调制信号以群速度传播。根据群速度和相速度的关系,对统一S波段测控系统(USB)测距测速数据进行分析处理,从而提出了测距的电离层延迟误差的分析方法。  相似文献   

8.
随着扩频技术的应用,航天测控网形成了传统测控体制与扩频测控体制相结合的局面,会出现潜在的相互干扰问题。针对这种情况,运用仿真软件建立模型,根据传统测控信号经过相关器后频谱的变化,分析扩频测控系统的处理增益,并详细说明了在扩频测控信号接收带宽内距中心载波不同位置的传统测控信号对扩频测控系统处理增益的影响,以及不同扩频码速率下系统处理增益的变化情况。最后运用本文的分析成果进行举例计算。  相似文献   

9.
深空测控系统要求具有角度自跟踪功能,而和差双通道跟踪体制下测控设备在任务前需要进行校相。传统校相依赖标校塔,深空测控系统天线口径大,无法建造满足远场条件的标校塔,从而只能采用其他校相方案。本文通过分析校相过程的机理,并结合射电星具有全天候、分布广、星历精确已知的特点,得到了利用射电星校相的方法。通过前期大量试验证明了该方法的可行性,并已确定应用于深空测控系统的研制。  相似文献   

10.
航天遥控信号传输可靠性是航天器的生命线。现行遥控体制在信号传输可靠性方面存在的问题很大,在航天技术步入军用以后,必须从防侦收、防复制、抗干扰等方面采取措施提高遥控信号传输可靠性。扩频遥控体制具有较强的防侦收、防复制、抗干扰功能,采用扩频体制取代现有体制是历史的必然。  相似文献   

11.
深空测控再生伪码测距技术研究   总被引:1,自引:0,他引:1  
针对深空测控任务中低信噪比情况下的航天器高精度测距问题,对再生伪码测距技术进行论述。介绍再生伪码测距技术原理,再生伪码测距通过再生方式消除信号上行链路噪声,提高了信噪比,但需要复杂的相关器;分析再生伪码测距采用的陶思沃斯码结构,详细论述再生伪码测距信号的地面上行、星上再生、地面下行处理过程,重点介绍各处理过程中的指标条件,并对再生伪码测距进行误差分析;重点对比分析再生伪码测距与传统透明转发测距,指出前者适合于深空低信噪比条件下的高精度测距,后者适用于近地高信噪比条件下的测距。  相似文献   

12.
月球探测卫星的轨道支持   总被引:9,自引:1,他引:9  
主要讨论采用月球卫星的探测方式时,月球探测器对测控系统的轨道支持要求和实现手段。重点对月球卫星转移轨道段的轨道测量和确定方法进行研究,利用仿真的地面站的测距和测角资料进行了定轨误差分析。  相似文献   

13.
提出了S/X航天测控与数据接收统一信道的概念,确定总体技术方案,并进行了信道设计;重点研究了利用高级在轨系统的插入业务实现伪码测距。  相似文献   

14.
本文根据TCP/IP网络技术特点,探讨航天测控领域中使用计算机网络技术完成计算机与测控设备实时信息交换的可能性,将网络计算机体制与以前的集中计算机体制进行了比较;本文针对航天测控领域中的实际应用。  相似文献   

15.
针对国内无人机系统之间缺乏互联、互通、互操作技术标准和能力的问题,研究了无人机通用测控方法和技术实现途径,提出了适用于无人机的通用测控模型、测控接口和描述模型。开发了小型无人机通用测控接口试验验证系统,对所提出的通用测控技术进行了技术验证,实验结果证明了该技术的可行性。  相似文献   

16.
双向相干测距测速体制是最常用的航天器测量体制,是一种闭环体制.与之相比较,开环测距测速可以在信号更微弱的情况下获取到观测量,在深空任务中有着独特的意义.然而,开环测距也面临棘手的技术难题——高精度航天器定时技术.针对该难题,在保持现有航天器信号体制的基础上,阐述了基于遥测信号和测距侧音信号(差分单向测距DOR信号可看作侧音信号)间相频约束的航天器定时原理,研究了侧音频率最优化设计方法,给出了“器上发射测站接收”的初步实现方案,为后续开展工程应用奠定了基础.  相似文献   

17.
针对星群多目标同时测控问题,基于星群轨道根数的时延特性和多普勒频移特性分析可得,星群多目标测控的上行链路遥控与测距信号可实现S CDMA(Synchronous Code Division Multiple Access,同步码分多址),由于星间距离较小,下行链路遥测与测距信号满足QS CDMA(Quasi synchronous code division multiple access,准同步码分多址).上行链路遥控和测距信号形式设计为PCM BPSK CDMA(Pulse Code Modulation Binary Phase Shift Keying Code Division Multiple Access,脉冲编码调制二进制相移键控码分多址),上行链路信号采用Gold序列扩频;下行链路遥测和测距信号形式设计为PCM BPSK CDMA,根据总的时延差,提出下行链路采用基于等长脉冲间隔法构造的LAS(Large Area Synchronous,大区域同步)码扩频.结果表明:比特信噪比Eb/N0为10.5 dB时,遥控误码率为1×10 6;Eb/N0为9.6 dB时,遥测误码率为1×10^5——与达到相同误码性能的Gold序列相比有1 dB改善,因此,LAS码相比于Gold码能够获得更好的误码性能.  相似文献   

18.
天基测控技术是航天测控系统的发展方向,是弥补地基(陆基+海基)测控系统缺陷、缓解地基测控资源紧张的有效办法。本文提出了基于“北斗一号”系统的航天器天基测控技术仿真方法,设计并建立了相应的仿真系统。基于建立的仿真系统、按照设计的仿真方法对航天器天基测控技术进行了全面仿真。仿真结果表明,基于“北斗一号”系统的天基测控技术可行,性能指标可以满足中低轨道航天器实际测控需要。  相似文献   

19.
再生伪码测距体制通过对上行伪码测距信号进行恢复,并重新调制到下行载波发送,可以获得可观的测距信号信噪比增益。对这部分增益的合理使用,可以获得较高的测距精度,也可以获得较短的测距时间,还可以提高遥测信号的功率。本文从测距码、捕获时间以及测距信号与遥控/遥测信号之间的相互干扰3方面介绍了再生伪码测距体制。  相似文献   

20.
针对航天测控DOR(差分单向测距)信标信号等侧音信号的滤波问题,借鉴扩频系统窄带干扰抑制领域中的SUWPT(频移非抽取小波包变换),提出了一种逆向算法。该算法通过最佳频移将信号移至各子带中间,然后选择能量较大的子带进行分解,通过记录的位置信息选择不同的重构滤波器,从而达到最佳滤波效果;最后将该滤波算法应用于航天测控侧音信号的差分相位提取过程。仿真结果表明,该算法比小波变换滤波、小波包滤波具有更好的滤波性能;滤波后差分相位提取精度相对滤波前提高3~4倍,有利于提高系统的测量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号