首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The radiation chemistry of aqueous solutions of formaldehyde was studied in order to obtain an insight into the possible role of ionizing radiation on cometary environments. Aqueous solutions of 1.0 mol dm-3 formaldehyde were exposed to gamma-radiation in the dose range from 0.01 to 1200 kGy at 298 K. The radiation chemical yield of decomposition of formaldehyde was determined to be: G(-CH2(OH)2)-26.3 +/- 1.2. The high radiation chemical yield of decomposition was explained by a chain reaction initiated by the radical CH(OH)2 with formaldehyde. Computer fitting of the experimental data gives k(CH(OH)2 + CH2(OH)2)- 8.0xl0(1) dm3 mol-1 s-1. In the computer treatment of experimental findings we used 54 equations to consider the radiolysis of water and 11 reactions for the radiolysis of aqueous formaldehyde. Based on previous estimates of the total dose of ionizing radiation that comets have accumulated over 4.6 billion years, we predict a radiation damage-depth curve of formaldehyde in comet nuclei.  相似文献   

2.
The behavior of an aqueous-dominant multicomponent cometary model is examined at high doses of ionizing radiation. The system is composed of a water mixture of HCN (0.2 mol dm-3), CH3CN (0.04 mol dm-3), C2H5CN (0.02 mol dm-3), CH3OH (0.12 mol dm-3) and HCO2H (0.01 mol dm-3. It was exposed to gamma rays at doses up to 18.5 MGy. The chemical kinetic database used in the computer treatment of experimental data consists of 79 reactions. A complex mixture of products has been synthesized: gases, amino acids, carboxylic acids and polymeric material. The results suggest that the pristine material in cometary nuclei may have been chemically altered by the action of cosmic rays and embedded radionuclides.  相似文献   

3.
A new paradigm is emerging in the field of photochemistry modeling in giant planets and Titan atmospheres. The emphasis is placed on the accurate predictions of the models and the quantification of their uncertainties. In order to improve photochemical models predictions, it is necessary to identify in chemical schemes the key reactions that should be studied in priority at conditions relevant to planetary atmospheres.  相似文献   

4.
利用美国NCAR最新的化学-气候耦合模式WACCM-3对平流层风场、温度场以及平流层臭氧等多种微量气体成分(O3, CH4, N2O, H2O, HCl, HNO3)的季节变化进行了数值模拟, 并使用ECMWF再分析资料与美国UARS卫星 搭载的HALOE, MLS, CLAES等探测器的观测资料, 对模式输出的动力、热力及化学成分浓度的气候平均值进行了验证. 结果表明, 在气候平均海表温度值驱动下, WACCM-3模式能够很好地再现ECMWF资料中平流层纬向平均风场与温度场的季节变化. 模拟结果中平流层化学成分的经向-垂直分布及其季节变化与卫星观测结果基本一致. 模式的动力、热力场在极地平流层以及热带对流层顶等区域存在一定的偏差. 这些偏差对于微量气体成分分布 的模拟具有一定影响, 特别是南半球冬(7月)、春(10月)季节南极平流层低层极夜 急流偏强, 造成极地地区附近的输送障碍增强, 从而导致CH4, N2O, H2O浓度比观测偏低. 此外, WACCM-3缺少热带平流层风场的准两年振荡(QBO) 机制, 这对于热带平流层东风急流以及低纬度平流层O3, CH4, N2O, H2O等成分经向输送的模拟结果也有一定影响.   相似文献   

5.
The photochemistry of hydrocarbons in Titan's atmosphere is modeled by a comprehensive kinetic scheme, containing 732 elementary reactions and 147 species up to C60. Four groups of the hydrocarbons are considered: Polyacetylenes (PA), Polyvinyles (PV), Vinylacetylenes (VA) and Allenes (Polyenes).  相似文献   

6.
Photochemistry of giant planets and their satellites is characterized by numerous reactions involving a lot of chemical species. In the present paper, chemical systems are modeled by signal flow graphs. Such a technique evaluates the transmission of any input into the system (solar flux, electrons ... ) and gives access to the identification of the most important mechanisms in the chemical system. This method is applied to the production of hydrocarbons in the atmospheres of giant planets. In particular, the production of C2H6 in the atmosphere of Neptune from the photodissociation of CH4 is investigated. Different pathways of dissociation of CH4 are possible from L alpha radiation. A chemical system containing 14 species and 30 reactions including these different pathways of dissociation is integrated. The main mechanism of production of C2H6 is identified and evaluated for each model of dissociation. The importance of various reaction pathways as a function of time is presented.  相似文献   

7.
Organic chemistry on Titan and prebiotic chemistry on Earth involve the same N-containing organics: nitriles and their oligomers. Couplings of their chemistry in the three parts of Titan's geofluid (atmosphere, aerosols and surface) seem to play a key role in the organic chemical evolution of the planet. If liquid water was present on Titan, then a prebiotic chemistry, involving eutectics, similar to that of the early Earth, may have occurred. However, liquid water is currently absent and a prebiotic chemistry based only on N-organics may be evolving now on Titan. The other consequence of the low temperatures of Titan is the possible formation of organics unstable at room temperature and very reactive. So far, these compounds have not been systematically searched for in experimental studies of Titan's organic chemistry. C4N2 has already been detected on Titan. Powerful reactants in organic chemistry, CH2N2, and CH3N3, may be also present. They exhibit spectral signatures in the mid-IR strong enough to allow their detection at the 10-100 ppb level. They may be detectable on future IR spectra (ISO and Cassini) of Titan.  相似文献   

8.
A CH4-N2-H2OV gas mixture was subjected to a high voltage (20 kV), high frequency (0.3 MHz) electric discharge. The energy input in the electric discharge was varied from 0.016 to 3.048 MJ mol-1. The chemical yields (G), expressed as the number of molecules formed or destroyed per 100 eV of energy input were calculated for several products. The G values calculated at the lowest energy input were (-CH4) = 6.48; (-N2) = 2.51; (C2H2) = 1.16; (HCN) = 0.215; (CH3CHO) = 0.115; (CH3CH2CHO) = 0.00161; (CH3(CH2)2CHO) = 0.0165; ((CH2CO2H)2) = 0.0000339; (CH4 --> Solid material) = 0.196; (N2 --> Solid material) = 0.00355. This is the first report in prebiotic studies in which the G values of various products in electric discharge experiments are determined. This type of study is needed in order to get a better insight into the relative role of electric discharges on the primitive Earth.  相似文献   

9.
The prebiotic synthesis of organic compounds using a spark discharge on various simulated prebiotic atmospheres at 25 degrees has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and the presence of added NH3, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all give about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For the H2/CO and H2/CO2 ratios less than 1, the yields fall off drastically to as low as 10(-3)%. Glycine is almost the only amino acid produced from CO and CO2 atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these results indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde parallel the amino acid results, with yields of HCN and H2CO as high as 13% based on the carbon. Ammonia is also produced from N2 in experiments with no added NH3 in yields as high as 4.9%. These results show that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges. The amount of ammonia formed by hydrolysis of HCN and various nitriles may have exceeded that formed directly in electric discharges.  相似文献   

10.
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life.  相似文献   

11.
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH  CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology.  相似文献   

12.
本文研究了Ⅱ类甲醇脉泽与周围红外源的关系,发现它们有很强的相关性。分析认为红外源很可能是Ⅱ类甲醇脉泽的抽运源。   相似文献   

13.
The Limb Infrared Monitor of the Stratosphere (LIMS) experiment is a limb scanning infrared sounder designed to measure vertical temperature profiles and the concentrations of key chemical compounds which are important in the stratospheric ozone-nitrogen photochemistry. This paper describes results from the O3 and HNO3 channels with emphasis on validation of the data. Similar discussions of results from the other channels are presented in two companion papers published in these proceedings.  相似文献   

14.
Aqueous solutions of 5-substituted hydantoins were irradiated with ultraviolet (UV) light, to investigate their structural stability against UV radiation as well as the possible photolysis products. The photolysis products were identified and the degree of photolysis was measured using reversed-phase and ion-exchange high-performance liquid chromatography. Hydantoin (2,4-imidazolidinedione) was dominantly detected as a photolysis product of 5-substituted hydantoins. With hydrolysis of UV-irradiated 5-substituted hydantoins, glycine and alanine were dominantly detected. These experimental results are important for the prebiotic photochemistry of 5-substituted hydantoins in the formation of hydantoin since they have been detected in Solar System materials.  相似文献   

15.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   

16.
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. “Hot” atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 108–1010 atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime.

Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: 14N(p, ) 11C, 16O(p, pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.  相似文献   


17.
Previous chemical vapor transport experiments of the GeSe-GeI4 system performed under reduced gravity conditions /1/ yielded crystals of considerably improved surface and bulk morphology. In addition, the mass transport rates observed in microgravity environment were significantly greater than predicted. A quantitative thermodynamic analysis of the solid-gas phase reactions of the GeSe-GeI4 system revealed the multi-component, multi-reaction nature of the vapor phase /2/. Continued transport studies on ground of the GeSe-GeI4 system in the presence of inert gases provided experimental evidence for the existence of a boundary layer /2/ and its thickness dependence on GeI4 pressure in closed tube systems. Systematic transport rate measurements for different orientations of the density gradient relative to the gravity vector demonstrated the effects of ampoule inclination on mass flux /3/. Based on a computational model for simultaneous chemical vapor transport, sublimation, and Stefan flow /3/, the excellent agreement of predicted with ground-based experimental mass transport rates over wide pressure ranges /3/ confirmed the validity of the model and the discrepancy between observed and expected transport rates of the GeSe-GeI4 system in microgravity.  相似文献   

18.
利用一维光化、辐射耦合模式研究了人为活动所排放出的废弃物CH4、N2O和CO2含量增加对高平流层,中间层大气的影响。结果指出,对流层中这些气体增加一倍将导致上中层大气水汽、O3和温度的明显变化。CO2含量增加将使上中层温度降低约10K;而CH4含量的加倍不仅使中层顶附近水汽含量增加50%以上,也使其温度有更明显的下降,这将更有利于於光云的形成。  相似文献   

19.
Comets and life.     
Some of the chemical species which have been detected in comets include H2O, HCN, CH3CN, CO, CO2, NH3, CS, C2 and C3. All of these have also been detected in the interstellar medium, indicating a probable relationship between interstellar dust and gas clouds and comets. Laboratory experiments carried out with different mixtures of these molecules give rise to the formation of the biochemical compounds which are necessary for life, such as amino acids, purines, pyrimidines, monosaccharides, etc. However, in spite of suggestions to the contrary, the presence of life in comets is unlikely. On the other hand, the capture of cometary matter by the primitive Earth is considered essential for the development of life on this planet. The amount of cometary carbon-containing matter captured by the Earth, as calculated by different authors, is several times larger than the total amount of organic matter present in the biosphere (10(18)g). The major classes of reactions which were probably involved in the formation of key biochemical compounds are discussed. Our tentative conclusions are that: 1) comets played a predominant role in the emergence of life on our planet, and 2) they are the cosmic connection with extraterrestrial life.  相似文献   

20.
In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of alpha-amino acids and N-acylamino acids from alpha-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from alpha-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号