共查询到20条相似文献,搜索用时 15 毫秒
1.
Philippe L. Lamy Imre Toth Björn J. R. Davidsson Olivier Groussin Pedro Gutiérrez Laurent Jorda Mikko Kaasalainen Stephen C. Lowry 《Space Science Reviews》2007,128(1-4):23-66
In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative
to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about
the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as
well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a
baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine
the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional
shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally
different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the
sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions
measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found
to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two
regions for the direction of the rotational axis of the nucleus: RA = 220°+50°
−30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50°
-30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function,
although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel
1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and
the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction
is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal
effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus
of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared
to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission. 相似文献
2.
Dust is an important constituent of cometary emission; its analysis is one of the major objectives of ESA’s Rosetta mission
to comet 67P/Churyumov-Gerasimenko (C–G). Several instruments aboard Rosetta are dedicated to studying various aspects of
dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time,
impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments
and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe
the present status of modelling the dust coma of 67P/C–G and predict the speed and flux of dust in the coma, the dust fluence
on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when
more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C–G is given, because
model parameters are derived from this data if possible. For quantities not yet measured for 67P/C–G, we use values obtained
for other comets, e.g. concerning the optical and compositional properties of the dust grains. One of the most important and
most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the
in-situ measurements at comet 1P/Halley in 1986. For 67P/C–G, constraining the mass distribution is currently only possible
by the analysis of astronomical images. We find that both the dust mass distribution and the time dependence of the dust production
rate of 67P/C–G are those of a fairly typical comet. 相似文献
3.
W. Riedler K. Torkar H. Jeszenszky J. Romstedt H. St. C. Alleyne H. Arends W. Barth J. V. D. Biezen B. Butler P. Ehrenfreund M. Fehringer G. Fremuth J. Gavira O. Havnes E. K. Jessberger R. Kassing W. Klöck C. Koeberl A. C. Levasseur-Regourd M. Maurette F. Rüdenauer R. Schmidt G. Stangl M. Steller I. Weber 《Space Science Reviews》2007,128(1-4):869-904
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey
to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively.
The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications
with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary
activity and the processes in the surface layer of the nucleus and the inner coma.
The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will
provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko.
According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be
an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles.
The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS
is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images
provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although
the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific
objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning
of the flight instrument, and the implications for cometary measurements. 相似文献
4.
C. Carr E. Cupido C. G. Y. Lee A. Balogh T. Beek J. L. Burch C. N. Dunford A. I. Eriksson R. Gill K. H. Glassmeier R. Goldstein D. Lagoutte R. Lundin K. Lundin B. Lybekk J. L. Michau G. Musmann H. Nilsson C. Pollock I. Richter J. G. Trotignon 《Space Science Reviews》2007,128(1-4):629-647
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko.
The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner
coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to
achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual
Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit
(PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the
available mass and power resources. 相似文献
5.
J. L. Burch R. Goldstein T. E. Cravens W. C. Gibson R. N. Lundin C. J. Pollock J. D. Winningham D. T. Young 《Space Science Reviews》2007,128(1-4):697-712
The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma
analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge
range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve
a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector
containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will
be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet
67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition. 相似文献
6.
J. G. Trotignon J. L. Michau D. Lagoutte M. Chabassière G. Chalumeau F. Colin P. M. E. Décréau J. Geiswiller P. Gille R. Grard T. Hachemi M. Hamelin A. Eriksson H. Laakso J. P. Lebreton C. Mazelle O. Randriamboarison W. Schmidt A. Smit U. Telljohann P. Zamora 《Space Science Reviews》2007,128(1-4):713-728
The main objective of the Mutual Impedance Probe (MIP), part of the Rosetta Plasma Consortium (RPC), is to measure the electron
density and temperature of Comet 67P/Churyumov-Gerasimenko’s coma, in particular inside the contact surface. Furthermore,
MIP will determine the bulk velocity of the ionised outflowing atmosphere, define the spectral distribution of natural plasma
waves, and monitor dust and gas activities around the nucleus. The MIP instrumentation consists of an electronics board for
signal processing in the 7 kHz to 3.5 MHz range and a sensor unit of two receiving and two transmitting electrodes mounted
on a 1-m long bar. In addition, the Langmuir probe of the RPC/LAP instrument that is at about 4 m from the MIP sensor can
be used as a transmitter (in place of the MIP ones) and MIP as a receiver in order to have access to the density and temperature
of plasmas at higher Debye lengths than those for which the MIP is originally designed. 相似文献
7.
8.
H. Nilsson R. Lundin K. Lundin S. Barabash H. Borg O. Norberg A. Fedorov J.-A Sauvaud H. Koskinen E. Kallio P. Riihelä J. L. Burch 《Space Science Reviews》2007,128(1-4):671-695
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
9.
Karl-Heinz Glassmeier Ingo Richter Andrea Diedrich Günter Musmann Uli Auster Uwe Motschmann Andre Balogh Chris Carr Emanuele Cupido Andrew Coates Martin Rother Konrad Schwingenschuh Karoly Szegö Bruce Tsurutani 《Space Science Reviews》2007,128(1-4):649-670
The fluxgate magnetometer experiment onboard the ROSETTA spacecraft aims to measure the magnetic field in the interaction
region of the solar wind plasma with comet 67P/Churyumov-Gerasimenko. It consists of a system of two ultra light (about 28
g each ) triaxial fluxgate magnetometer sensors, mounted on the 1.5 m long spacecraft boom. The measurement range of each
sensor is ±16384 nT with quantization steps of 31 pT. The magnetometer sensors are operated with a time resolution of up to
0.05 s, corresponding to a bandwidth of 0–10 Hz. This performance of the RPC-MAG sensors allows detailed analyses of magnetic
field variations in the cometary environment. RPC-MAG furthermore is designed to study possible remnant magnetic fields of
the nucleus, measurements which will be done in close cooperation with the ROSETTA lander magnetometer experiment ROMAP. 相似文献
10.
11.
Karl-Heinz Glassmeier Hermann Boehnhardt Detlef Koschny Ekkehard Kührt Ingo Richter 《Space Science Reviews》2007,128(1-4):1-21
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will
rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties
of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region
of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed
by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus.
On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia. 相似文献
12.
C. M. Lisse M. F. A’Hearn T. L. Farnham O. Groussin K. J. Meech U. Fink D. G. Schleicher 《Space Science Reviews》2005,117(1-2):161-192
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules
and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface
temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply
dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics
of the coma, as well as with its variability with time, orbital position, and heliocentric distance.
The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive
measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several
gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986.
This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current
state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards
that the coma presents for the spacecraft.
An erratum to this article is available at . 相似文献
13.
14.
Since its discovery in 1867, periodic comet 9P/Tempel 1 has been observed at 10 returns to perihelion, including all its returns
since 1967. The observations for the seven apparitions beginning in 1967 have been fit with an orbit that includes only radial
and transverse nongravitational accelerations that model the rocket-like thrusting introduced by the outgassing of the cometary
nucleus. The successful nongravitational acceleration model did not assume any change in the comet’s ability to outgas from
one apparition to the next and the outgassing was assumed to reach a maximum at perihelion. The success of this model over
the 1967–2003 interval suggests that the comet’s spin axis is currently stable. Rough calculations suggest that the collision
of the impactor released by the Deep Impact spacecraft will not provide a noticeable perturbation on the comet’s orbit nor
will any new vent that is opened as a result of the impact provide a noticeable change in the comet’s nongravitational acceleration
history. The observing geometries prior to, and during, the impact will allow extensive Earth based observations to complement
the in situ observations from the impactor and flyby spacecraft. 相似文献
15.
We investigate links between the observational environment as experienced by the Hipparcos satellite and the performance of
the spacecraft and payload instrumentation, with particular emphasis on finding out whether some of these effects may have
been inadequately represented in instrument calibrations and could thus have affected the scientific results of the mission.
Scan-coverage and radiation effects are primarily random effects with only some long-term systematics. However, long- (days
to weeks) and short-term (hours) temperature variations reflected in the performance of some of the spacecraft instrumentation.
It is shown that only a small sign of some long-term thermal variations could be detected in the payload instrumentation.
These findings further limit the scope left for the occurrence of large-scale correlated errors in the Hipparcos astrometric
data. On the other hand, a number of great circles were identified which showed a highly significant drift of the basic angle,
which had not been detected in the preparation of the published data. The data from these circles may have, in some cases,
led to, very localised, slightly anomalous results, in particular where stars are accidentally affected by two or more of
such circles.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
16.
17.
提出采用介质阻挡放电等离子体提高平流层螺旋桨气动性能的新思路,通过求解三维非定常可压缩N-S方程,考虑介质阻挡放电等离子体体积力模型,仿真研究了这种方法的可行性。研究发现,所研究的螺旋桨工况,对于普通螺旋桨,随着转速的增大,拉力先增大后减小、扭矩和效率逐渐减小;采用等离子体流动控制时,螺旋桨的气动性能得到改善,拉力系数和效率随转速的增大逐渐减小。当螺旋桨前进速度不变,转速逐渐增大时,等离子体对叶素表面流动分离现象的控制效果逐渐减弱,螺旋桨拉力、效率等性能参数的改善效果逐渐减小。 相似文献
18.
为了探究不同等离子体激励布局对串列叶栅角区流动分离抑制的效果,采用数值仿真方法,在流动分离前施加激励,对不同布局激励前后流场的流场结构和总压损失沿流向分布进行对比,分析了等离子体激励布局对串列叶栅角区流动分离的影响,以及激励对串列叶栅气流掺混的影响。结果表明:在来流马赫数为0.5、攻角为4°时,ACU2布局激励对流动分离有较好的抑制作用,总压损失系数减小10.74%;ACU2-ACU5组合激励对抑制后排叶片的角区分离有较好效果,总压损失系数降低25.09%。 相似文献
19.
激励强度对等离子体合成射流的影响 总被引:1,自引:0,他引:1
通过在Navier-Stokes方程组中添加体积力源项的方法,模拟了不同激励强度下等离子体合成射流,并研究了激励强度对流场特性的影响。计算结果表明,随着激励强度的增大,激励器附近壁面处的涡量增大,对应的涡对中心诱导的流向速度增大,从而导致涡核更加远离壁面,并被拉伸变长。对于等离子体合成射流的时均流场,其中轴线上的流向速度随着激励强度增大整体变大。在较小的激励强度下,射流半宽度随着激励强度的增大而增大;而激励强度很大时(>6 Dc0),激励强度对半宽度基本没有影响。沿流向的动量通量也随激励强度的增大单调增加。 相似文献
20.
为了探究CF4/SF6反应气体及其含量对大气压等离子体的温度的影响规律,采用红外热像仪记录等离子体反应区域的温度.实验结果表明在系统输入功率为260W时,对于CF4气体,等离子体区域的温度随着CF4含量的增加先升高然后降低;对于SF6气体,等离子体区域的温度随着SF6含量的增加而逐渐降低;在相同条件下,反应气体为SF6... 相似文献