共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
为建立一种适用于大包线、变状态的高精度、高实时性航空发动机机载自适应稳态模型,提出一种基于神经网络和推进系统矩阵相融合(NN-PSM)的机载自适应稳态模型建模方法。该方法基于小偏差线性化方法对发动机进行线性化来提取推进系统矩阵,用于表征机载模型与发动机之间的输出偏差量。基于神经网络建立发动机基线模型,用于映射飞行条件与发动机输出量之间的关系,利用神经网络的强拟合能力提高机载模型的稳态精度;设计卡尔曼滤波器实时估计发动机健康参数,提高模型的自适应能力。在大包线、变状态的飞行条件下进行仿真验证,并与传统的复合推进系统模型(CPSM)进行对比,结果表明:NN-PSM模型的平均精度在0.66%以内,而CPSM的平均精度为2.07%以内,运行时间仅为CPSM的1/10,且具有数据存储量少的特点。 相似文献
3.
4.
机载模型是先进航空发动机控制方法的基础,基线模型作为机载模型的重要组成部分,其建模准确度决定了机载模型的精度。针对传统单一基线模型在局部飞行包线精度高,而难以用于发动机全包线、全状态稳态性能预测的问题,提出了一种基于状态感知的发动机变基线模型建模方法。首先在小波变换滤波的基础上,提出基于状态感知的最优稳态数据筛选阈值计算方法,以减少稳态数据的错选或遗漏;其次,提出基于高斯混合模型(GMM)的变基线模型建模方法,利用GMM实现飞行数据自主聚类,并结合回归分析法,构建全包线、全状态的高精度变基线模型。仿真结果表明:本文提出的稳态数据筛选方法能有效避免数据错选或遗漏,相比于常规的单一基线模型,所提出的变基线模型可使高、低压转子转速的相对均值误差分别减小45%,30%以上。该方法能显著提升基线模型精度,同时实现了稳态数据自动化提取,避免了过多依赖人工经验且难以获得最优阈值的问题。 相似文献
5.
自适应通用发动机技术(ADVENT)计划是多用途经济可承受的先进涡轮发动机(VAATE)计划中第2阶段的1个标志性计划,目标是发展和验证进气道、发动机、排气喷管和综合热管理技术,以获得在高空和高速下具有最佳超声速性能和亚声速燃油效率的推进系统。 相似文献
6.
7.
基于稀疏自动编码器的发动机机载模型建模方法研究 总被引:1,自引:0,他引:1
为解决分段线性化机载模型精度不足的问题,提出并设计了基于稀疏自动编码器的大包线、具有10输入11输出的发动机机载自适应模型,该模型由稳态、动态两部分组合而成。首先基于一种新的相似准则进行建模所需样本数据的压缩,在保留主要信息的同时,大大降低了数据量及采样时间。用BP算法对简化后的样本数据进行了机载模型稳态部分的建模。针对机载模型动态部分所需样本数据量巨大、BP算法难以训练的问题,建立了基于稀疏自动编码器的动态机载模型。引入准稳态判断逻辑,在动态过程使用稀疏自动编码器的动态机载模型,在稳态过程使用基于BP算法的稳态机载模型。仿真结果表明,所建立的发动机机载模型具有优良的动稳态精度,且实时性好、存储量小,其中动态精度小于1%,稳态精度小于0.6%,一次模型计算时间不大于1ms,模型存储量不大于100kB。 相似文献
8.
传统的安全性评估方法不适用于具有多状态属性的现代机载系统。根据系统与系统组成单元之间的状态关系,构建了基于贝叶斯网络的机载系统多状态安全性模型;运用通用生成函数给出了贝叶斯网络非根节点的条件概率表,基于变量消元法提出了系统失效状态发生概率计算方法,推导了系统组成单元重要度算法。结合某型飞机副翼控制系统给出了应用实例。结果表明,方法为解决多状态机载系统的安全性评估问题提供了一种简洁直观的方法,能够有效评估机载系统的安全性水平,确定各单元对系统安全性中的影响。 相似文献
9.
基于复合推进系统动态模型-状态变量模型的航空发动机直接推力预测控制 总被引:1,自引:1,他引:1
直接推力控制可以有效改善推力控制的品质,针对航空发动机直接推力控制问题,进行了模型预测控制(Model Predictive Control, MPC)研究。为了提升航空发动机推力控制的精度,提出了基于复合推进系统动态模型-状态变量模型(Compact Propulsion System Dynamic Model-State Variable Model-State Variable Model, CPSDM-SVM)的航空发动机直接推力预测控制方法。CPSDM实时估计出不可测参数(推力、喘振裕度等)的基准值,SVM则根据未来输入实时预测发动机未来响应。由于CPSDM将发动机分为进气道、核心机、喷管、喘振裕度、推力等进行建模,在兼顾精度的同时,提高机载模型的实时性。CPSDM-SVM作为MPC算法中的预测模型,具有较高的精度和实时性。仿真结果表明,在与基于分段线化模型的传统模型预测控制方法实时性基本相同的情况下,所提出方法控制效果有明显的提升,调节时间减小了1.17s。所提出方法稳态控制精度为0.08%,传统方法稳态精度为2.58%。因此,所提出方法在保证实时性的条件下,提升了控制精度和控制效果。 相似文献
10.
航空发动机故障诊断的机载自适应模型 总被引:3,自引:3,他引:3
提出了复合拟合法建立状态变量模型,该方法应用于建立高维状态变量模型时,具有较高的精度.将健康参数作为增广的状态变量,设计了卡尔曼滤波器,从而可以根据可测参数的偏离量估计得到健康参数.为了减少自适应模型与真实发动机之间的建模误差,在自适应模型中加入神经网络对稳态基点模型进行修正,从而提高了故障诊断系统的置信度. 相似文献
11.
提出了一种采用遗传算法建立用于航空发动机控制系统设计的小偏差状态变量模型的方法,即根据发动机稳态工作点处的线性化数学模型的动态响应应该与该稳态工作点处的非线性数学模型动态响应一致的原则来构造遗传算法的适应度函数,通过优化算法,得出系统的状态变量模型。该方法不受系统模态及模型阶次的限制。应用该方法建立某型涡扇发动机的小偏差状态变量模型,具有较高的建模精度,根据该状态变量模型设计鲁棒控制器取得了良好的控制效果,从而验证了该方法的有效性。 相似文献
12.
利用航空发动机测量参数偏离正常工作情况下的变化量,可以估计发动机的非额定工作状况,并以此对机载模型进行校正,使其与真实发动机工作状况保持一致。建立了包含发动机性能蜕化因素的状态变量模型并对其进行了增广,设计了卡尔曼滤波器,根据可测输出偏离量对发动机性能蜕化值进行了估计,并将性能蜕化值用于修正发动机不可测输出参数。考虑了当某一传感器发生故障后,利用一簇卡尔曼滤波器对发生故障的传感器进行诊断并隔离,并依据剩余非故障传感器的信息对自适应模型进行重构。仿真结果表明,重构的自适应模型能够满足精度及实时性要求。 相似文献
13.
14.
15.
16.