首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In view of the complexity of landing on the deck of aircraft carrier, a systematic model, composed of six- degree-of-freedom mathematic model of carrier-based aircraft, four-degree-of-freedom model of landing gears and six-degree-of-freedom mathematic model of carrier, is established in the Matlab-Simulink environment, with damping function of landing gears and dynamic characteristics of tires being considered. The model, where the car- rier movement is introduced, is applicable for any abnormal landing condition. Moreover, the equations of motion and relevant parameter are also derived. The dynamic response of aircraft is calculated via the variable step-size Runge-Kuta algorithm. The effect of attitude angles of aircraft and carrier movement during the process of landing is illustrated in details. The analytical results can provide some reference for carrier-based aircraft design and main- tenance.  相似文献   

2.
A time-varying modal parameter identification method combined with Bayesian information criterion (BIC) and grey correlation analysis (GCA) is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field. To demonstrate the method, the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field, and the dynamic outputs of the beam are first simulated as the meas- ured data for the identification. Then, an improved time-varying autoregressive (TVAR) model is generated from the simulated input and output of the system. The time-varying coefficients of the TVAR model are expahded as a finite set of time basis functions that facilitate the time-varying coefficients to be time invariant. According to the BIC for preliminarily determining the scope of the order number, the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree (AGCD). Finally, the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method. The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.  相似文献   

3.
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed. The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system. The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK, and simulation results of dry runway and wet runway are presented. The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93% on dry runway and 82% on wet runway respectively.  相似文献   

4.
Fatigue damage monitoring is critical metallic structure health monitoring of aircraft.The sensor should be high sensitive,easy to be integrated into structure and well adaptable for poor working conditions.Therefore,an attached eddy current sensor with flexible plane is put forward and its characteristics are analyzed.By extracting material′s conductivity as the crack features,forward semi-analytical model is established and parameter optimizations are carried out.Crack perturbation model of attached eddy current sensor is constructed,and perturbation voltages of sensing channels under three-dimension structural crack are obtained.To verify the sensor′s performance,monitoring experiment on crack extension is conducted under condition of 3 MHz frequency.The validation experimental results show that perturbation model of 2A12-T4 aluminum alloy agrees well with experiment results,and perturbation model errors of four sensing channels are within 25%.The attached eddy current sensor is capable of testing the crack nondestructively and measuring the crack extension quantitatively with the accuracy of 1mm.  相似文献   

5.
To evaluate the landing response of the large civil aircraft in the conceptual design phase , a method for simulating aircraft landing is given.The model for the shock absorber is investigated.The flexible airframe model is established using finite element model ( FEM ) to analyze its modes.Then , the whole aircraft model with flexible airframe is made for the multibody simulation.Tail-down , two-point , three-point and sideslip landing scenarios are studied.The influence on the landing performance considering mode superposition of the flexible airframe is analyzed.Both longitudinal and spanwise positions of the main landing gear are changed to research the influence on the landing performance.Results show that the method is feasible.The shock absorber axial force of the main landing gear with the flexible airframe is smaller than that of rigid airframe.The number of mode superposition and the position of main landing gear can influence the landing response.  相似文献   

6.
The mathematical model of quadcopter-unmanned aerial vehicle(UAV)is derived by using two approaches:One is the Newton-Euler approach which is formulated using classical mechanics;and other is the Euler-Lagrange approach which describes the model in terms of kinetic(translational and rotational)and potential energy.The proposed quadcopter′s non-linear model is incorporated with aero-dynamical forces generated by air resistance,which helps aircraft to exhibits more realistic behavior while hovering.Based on the obtained model,the suitable control strategy is developed,under which two effective flight control systems are developed.Each control system is created by cascading the proportional-derivative(PD)and T-S fuzzy controllers that are equipped with six and twelve feedback signals individually respectively to ensure better tracking,stabilization,and response.Both proposed flight control designs are then implemented with the quadcopter model respectively and multitudinous simulations are conducted using MATLAB/Simulink to analyze the tracking performance of the quadcopter model at various reference inputs and trajectories.  相似文献   

7.
To solve the problem of dynamic power resource allocation for cooperative penetration combat,the continuous game theory is introduced and a two-person general-sum continuous-game-based model is put forward with a common payoff function named collaborative detection probability of netted radar countermeasures.Comparing with traditional optimization methods,an obvious advantage of game-based model is an adequate consideration of the opposite potential strategy.This model guarantees a more effective allocation of the both sides′power resource and a higher combat efficiency during a combat.Furthermore,an analysis of the complexity of the proposed model is given and a hierarchical processing method is presented to simplify the calculating process.Simulation results show the validity of the proposed scheme.  相似文献   

8.
A new approach to modifying the stiffness and mass matrices of finite element models is presented to improve the calculation precision. By measuring the mode frequencies and shapes of both of the original and the new structures with changed stiffness and mass, the stiffness and mass matrices of the finite element model can be updated through matrices calculation and solving algebra equations. Taking a multi-freedom model as an example, the relation between the number of the modes and the correction precision of stiffness and mass matrix elements is researched. The facility and precision of the method are totally confirmed especially when the modeling error is known limited to a definite local range. The feasibility of the approach is proven by an effective engineering application to the model updating of a wing piece used in flutter test.  相似文献   

9.
Mathematical model for hyperboloid grinding of twist drill and relationships between drill design and grinding parameters are introduced.Point angles at outer corner and chisel edge corner are proposed to be used as the drill design parameters to determine the type uniquely and the relicf andgle is used as a supplement parameter.Function relations between the twist drill design and the grinding parameters are derived.Hence a theeoretical basis is estab-lised for design and grinding of the hyperboloid twist drill.  相似文献   

10.
This paper presents an in-flight alignment technique for a strapdown inertial navigation system (SINS) and employs a star pattern recognition procedure for identifying stars sensed by a CCD electrooptical star sensor.Collinearity equations are used to estimate sensor frame star coordinates and the conventional least square differential correction method is used to estimate the unknown orientation angles. A comparison of this attitude with the attitude estimated by the SINS provides axis misalignment angles. Simulations using a Kalman filter are carried out for an SINS and the system employs a local level navigation frame. The space stabilized SINS is discussed in conjunction with the celestial aiding. Based on the observation of the Kalman filter, the estimating and compensating gyro errors, as well as the position and velocity errors caused by the SINS misalignments are calibrated by celestial attitute information.  相似文献   

11.
战斗机的体系对抗分析(英文)   总被引:1,自引:0,他引:1  
体系对抗分析是武器系统作战效能研究的最高层次。本文建立了空对空作战体系对抗的物理模型 ,基于多元兰彻斯特平方律方程 ,给出了不同空战武器战术交战的数学模型 ,考虑现代战争的高技术特征 ,发展了战役优势参数概念 ,使其更加准确地反映空对空作战的实质。以数学模型和战役优势参数为核心 ,采用随机分配目标战术和战斗机对空作战能力指数 ,完成优势评估、进程预测和配置优化等体系对抗问题的计算分析。结果表明 ,具有发展特征的经典作战理论仍能在新的应用中发挥重要作用。  相似文献   

12.
为了提高战机的生存力,本文针对战机与中程地-空导弹之间的攻防对抗问题,研究了无机动飞行、作机动飞行以及抛射诱饵弹时战机逃脱导弹追击的情况,首先建立数学模型,然后基于Visual C 和Matlab软件进行数值仿真。仿真结果表明:战机作机动和抛射诱饵能提高生存力,但在不同时机做不同机动的效果显著不同,蛇形机动效果最好。  相似文献   

13.
首先分析战斗机反舰攻击和防空系统对抗过程的特点,然后给出了随机因素效能仿真模型与确定性模型相结合的对抗双方作战行动模拟方法,提出战斗机编队的生存概率和对舰队的指定毁伤效果等两项基本任务效能指标及算法,并通过战斗机队攻击集体防御舰艇编队的任务效能算例验证了该方法的可行性。对舰攻击效能评估方法既可以用于战斗机设计分析,也可以用于战术研究。  相似文献   

14.
雷达隐身和机载电子攻击组合增强的飞机作战生存力评估   总被引:1,自引:0,他引:1  
作战生存力是新型军用飞机发展中要考虑的一个关键要素,雷达隐身和机载电子攻击是两个减缩飞机敏感性的主要技术.本文给出一个攻击任务的战术设定,研究了雷达散射截面和机载雷达干扰机对威胁雷达探测概率的影响,确定了雷达制导地空导弹和防空炮火在目标雷达散射截面减缩或/和干扰机辐射功率干扰下的制导精度,计算了飞机单发击毁概率,最后给出一架攻击机在一个假设敌对威胁环境中的出击架次生存力,说明综合使用雷达隐身和机载电子攻击技术使作战飞机的生存力得到增强,评估方法有效实用.  相似文献   

15.
特征结构配置法是设计多模态飞行控制系统一种较为有效的方法。在设计时,它可将系统的性能指标与飞机的飞行品质要求结合起来,获取直接和希望的控制规律。本文在此基础上,提出求局部输出反馈阵(其中一部分元素限定为零)的方法,从而可使设计具有更大的灵活性,系统配置也可更为简单。 文中简述了特征结构配置法,对提出的输出反馈阵中元素可限定的计算方法给予推导和论证,并以此法设计了某型飞机多模态飞行控制系统中空中格斗/空地扫射两个控制模态(解耦的)的控制规律,最后对设计的结果作了数字仿真。仿真结果表明:设计的系统具有令人满意的性能,提出的方法是完全可行的。  相似文献   

16.
现代战机超机动攻击研究   总被引:1,自引:0,他引:1  
在研究、比较两种非线性系统设计方法——动态逆和Backstepping的基础上,设计了具有大机动飞行的,基于Lyaponov全局稳定的Backstepping飞行控制律;其次,探讨了衡量机动攻击导引性能的评价尺度,并进一步研究了如何根据载机与目标的相对运动,导引载机机动飞行,以迅速满足载机空空导弹离轴发射条件,实现超机动攻击的导引律。最后,以攻击机动和非机动目标飞行仿真,说明了所研究的机动攻击导引方法的正确性和可行性。  相似文献   

17.
攻击直升机作战效能评估   总被引:6,自引:0,他引:6  
攻击直升机是现代战争中最具威胁的作战兵器之一,作战模拟对于武器系统作战效能分析具有不可替代的作用。本文用马尔柯夫过程建立了直升机在威胁环境中攻击一个地面目标的数学模型,导出了攻击任务成功率、目标被击毁率和直生机损失率等效能的表达式和计算方法,讨论了攻击直升机的费用-效能关系、最优战斗时间以及通过计算实例说明改装机载电子对抗设备对作战效能的影响  相似文献   

18.
小型无人倾转旋翼机全模式飞行操纵控制   总被引:1,自引:0,他引:1  
研究了倾转旋翼机的飞行数学方程,建立了小型无人倾转旋翼机在直升机,倾转及飞机飞行模式的飞行力学仿真模型,计算得出配平工作点处各通道的操纵量和飞行器的飞行姿态,通过各飞行模式的仿真结果确定了该飞行器的全模式飞行策略,飞行试验表明仿真结果符合倾转旋翼机的飞行特性.最后利用特征结构配置算法对小型倾转旋翼机进行解耦控制,并得到良好的解耦效果.  相似文献   

19.
鸭式布局战斗机非常规机动的流场机理数值分析   总被引:2,自引:0,他引:2  
以先进战斗机的非常规机动为对象,发展了一种适用于大幅度运动变化的非结构嵌套网格生成方法,建立了一整套非定常流场N-S方程数值求解方法。在对三角翼动态气动特性计算验证的基础上,模拟了飞机过失速机动条件下飞行姿态和来流速度的变化特征,对鸭式布局战斗机"眼镜蛇机动"的非定常涡结构、非定常气动力效应和气动特性进行了数值研究,揭示了鸭式布局战斗机"眼镜蛇机动"的非定常流场机理。  相似文献   

20.
飞机概念设计中的外形参数化模型的研究   总被引:1,自引:0,他引:1  
在现代CAD造型技术的支持下.飞机外形的参数化模型可以成为飞机概念设计中总体布局、方案比较、外形设计和总体参数优化设计的重要工具。本文结合NURBS的造型功能和解析函数曲线易于控制的特点,采用外形的控制方程和实体的具体表示各自独立的方法。在ACIS几何造型平台上建立了一套飞机外形的参数化设计模型。本文研究的参数化模型可以把原来飞机外形复杂的画图过程转化为飞机外形的自动化设计过程,从而提高飞机外形设计的可设计性和可计算性。在文中还深入研究了飞机外形的参数化模型在飞机概念设计中的作用和意义。分析了模型在飞机概念设计过程中的数据传递过程,说明本文研究的参数化模型可以进一步促进飞机概念设计中多学科优化设计方法的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号