共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter W. A. Roming Thomas E. Kennedy Keith O. Mason John A. Nousek Lindy Ahr Richard E. Bingham Patrick S. Broos Mary J. Carter Barry K. Hancock Howard E. Huckle S D. Hunsberger Hajime Kawakami Ronnie Killough T Scott Koch Michael K. Mclelland Kelly Smith Philip J. Smith Juan Carlos Soto Patricia T. Boyd Alice A. Breeveld Stephen T. Holland Mariya Ivanushkina Michael S. Pryzby Martin D. Still Joseph Stock 《Space Science Reviews》2005,120(3-4):95-142
The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray
bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use
of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chrétien design with micro-channel plate intensified
charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning
of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument. 相似文献
2.
《COSPAR's Information Bulletin》1986,1986(106-107):91-92
3.
White Oran R. Fox Peter A. Meisner Randy Rast Mark P. Yasukawa Eric Koon Darryl Rice Crystal Lin Haosheng Kuhn Jeff Coulter Roy 《Space Science Reviews》2000,94(1-2):75-82
Two Precision Solar Photometric Telescopes (PSPT) designed and built at the U.S. National Solar Observatory (NSO) are in operation in Rome and Hawaii. A third PSPT is now in operation the NSO at Sunspot, NM. The PSPT system records full disk solar images at three wavelengths: K line at 393.3 nm and two continua at 409 nm and 607 nm throughout the observing day. We currently study properties of limb darkening, sunspots, and network in these images with particular emphasis on data taken in July and September 1998. During this period, the number of observations per month was high enough to show directional properties of the radiation field surrounding sunspots. We show examples of our PSPT images and describe our study of bright rings around sunspots. 相似文献
4.
Several automated optical telescopes have been setup at appropriate longitudes around the globe to study earthshine variations
and asteroseismology. The first telescope has been setup at Teide Observatory, Tenerife, Spain in October 2004. The intensity
of earthshine relates to the average of Earth’s albedo, and in turn relates to the global temperature of the Earth. A global
network is necessary because each site can measure the earthshine reflected from only a part of the Earth. The network will
also be used for asteroseismology study. It can measure photometric variations of pulsating stars. The long-term and continuous
measurements allow the accurate determination of mode frequencies of stellar pulsations, which provides information on the
properties of stellar interior. 相似文献
5.
Scott D. Barthelmy Louis M. Barbier Jay R. Cummings Ed E. Fenimore Neil Gehrels Derek Hullinger Hans A. Krimm Craig B. Markwardt David M. Palmer Ann Parsons Goro Sato Masaya Suzuki Tadayuki Takahashi Makota Tashiro Jack Tueller 《Space Science Reviews》2005,120(3-4):143-164
he burst alert telescope (BAT) is one of three instruments on the
Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an
accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to
point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical
observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed
of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a
1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution,
a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky
hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor. 相似文献
6.
The three-dimensional structure of the solar maximum modulation of cosmic rays in the heliosphere can be studied for the first
time by comparing observations from Ulysses at high solar latitudes to those from in-ecliptic spacecraft, such as IMP-8. Observations through mid-2000 show that changes
in modulation remain well correlated at Earth and Ulysses up to latitudes of ∼60° south. The observed changes seem to be best correlated with changes in the inclination of the heliospheric
current sheet. The spectral index of the proton spectra at energies <100 MeV in the ecliptic and at high latitudes remain
roughly consistent with the T
+1 spectrum expected from modulation models, while the spectral index of the helium spectrum at both locations has changed smoothly
from the flat or even negative index spectra characteristic of anomalous component fluxes toward the T
+1 galactic spectrum with increasing modulation. Intensities near the equator and at high latitude remain nearly equal, and
latitudinal gradients for nucleonic cosmic rays thus remain small (<1% deg−1) at solar maximum. In the most recent data fluxes of protons and helium with energies less than ∼100 MeV nucl−1 measured by Ulysses are smaller than those measured at IMP-8, suggesting that the gradients may have switched to become negative toward the poles
even before a clear reversal of polarity for the solar magnetic dipole has been completed.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
7.
G. M. Mason A. Korth P. H. Walpole M. I. Desai T. T. Von Rosenvinge S. A. Shuman 《Space Science Reviews》2008,136(1-4):257-284
The Solar-Terrestrial Relations Observatory (STEREO) mission addresses critical problems of the physics of explosive disturbances in the solar corona, and their propagation and interactions in the interplanetary medium between the Sun and Earth. The In-Situ-Measurements of Particles and CME Transients (IMPACT) investigation observes the consequences of these disturbances and other transients at 1 AU. The generation of energetic particles is a fundamentally important feature of shock-associated Coronal Mass Ejections (CMEs) and other transients in the interplanetary medium. Multiple sensors within the IMPACT suite measure the particle population from energies just above the solar wind up to hundreds of MeV/nucleon. This paper describes a portion of the IMPACT Solar Energetic Particles (SEP) package, the Suprathermal Ion Telescope (SIT) which identifies the heavy ion composition from the suprathermal through the energetic particle range (~few 10 s of keV/nucleon to several MeV/nucleon). SIT will trace and identify processes that energize low energy ions, and characterize their transport in the interplanetary medium. SIT is a time-of-flight mass spectrometer with high sensitivity designed to derive detailed multi-species particle spectra with a cadence of 60 s, thereby enabling detailed studies of shock-accelerated and other energetic particle populations observed at 1 AU. 相似文献
8.
J.-A. Sauvaud D. Larson C. Aoustin D. Curtis J.-L. Médale A. Fedorov J. Rouzaud J. Luhmann T. Moreau P. Schröder P. Louarn I. Dandouras E. Penou 《Space Science Reviews》2008,136(1-4):227-239
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations. 相似文献
9.
R. A. Mewaldt C. M. S. Cohen W. R. Cook A. C. Cummings A. J. Davis S. Geier B. Kecman J. Klemic A. W. Labrador R. A. Leske H. Miyasaka V. Nguyen R. C. Ogliore E. C. Stone R. G. Radocinski M. E. Wiedenbeck J. Hawk S. Shuman T. T. von Rosenvinge K. Wortman 《Space Science Reviews》2008,136(1-4):285-362
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result. 相似文献
10.
David N. Burrows J. E. Hill J. A. Nousek J. A. Kennea A. Wells J. P. Osborne A. F. Abbey A. Beardmore K. Mukerjee A. D. T. Short G. Chincarini S. Campana O. Citterio A. Moretti C. Pagani G. Tagliaferri P. Giommi M. Capalbi F. Tamburelli L. Angelini G. Cusumano H. W. Bräuninger W. Burkert G. D. Hartner 《Space Science Reviews》2005,120(3-4):165-195
he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows.
The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset.
The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity
is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition.
It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure
mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades.
The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow
each burst for days or weeks.
Dedicated to David J. Watson, in memory of his valuable contributions to this instrument. 相似文献
11.
With Ulysses approaching the south solar polar latitudes during a period of high solar activity, it is for the first time possible to
study the distribution of solar energetic particles (SEPs) in solar latitude as well as in radius and longitude. From July
1997 to August 2000, Ulysses moved from near the solar equator at ∼5 AU to ∼67° S latitude at ∼3 AU. Using observations of >∼30 MeV protons from Ulysses and IMP-8 at Earth we find good correlation between large SEP increases observed at IMP and Ulysses, almost regardless of the relative locations of the spacecraft. The observations show that within a few days after injection
of SEPs, the flux in the inner heliosphere is often almost uniform, depending only weakly on the position of the observer.
No clear effect of the increasing solar latitude of Ulysses is evident. Since the typical latitudinal extent of CMEs, which most likely accelerate the SEPs, is only ∼30°, this suggests
that the enhanced cross-field propagation for cosmic rays and CIR-accelerated particles deduced from Ulysses’ high latitude studies near solar minimum is also true for SEPs near solar maximum.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
12.
The James Webb Space Telescope 总被引:4,自引:0,他引:4
Jonathan P. Gardner John C. Mather Mark Clampin Rene Doyon Matthew A. Greenhouse Heidi B. Hammel John B. Hutchings Peter Jakobsen Simon J. Lilly Knox S. Long Jonathan I. Lunine Mark J. Mccaughrean Matt Mountain John Nella George H. Rieke Marcia J. Rieke Hans-Walter Rix Eric P. Smith George Sonneborn Massimo Stiavelli H. S. Stockman Rogier A. Windhorst Gillian S. Wright 《Space Science Reviews》2006,123(4):485-606
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities. 相似文献
13.
L. M. Peticolas N. Craig T. Kucera D. J. Michels J. Gerulskis R. J. MacDowall K. Beisser C. Chrissotimos J. G. Luhmann A. B. Galvin L. Ratta E. Drobnes B. J. Méndez S. Hill K. Marren R. Howard 《Space Science Reviews》2008,136(1-4):627-646
The STEREO mission’s Education and Outreach (E/PO) program began early enough its team benefited from many lessons learned as NASA’s E/PO profession matured. Originally made up of discrete programs, by launch the STEREO E/PO program had developed into a quality suite containing all the program elements now considered standard: education workshops, teacher/student guides, national and international collaboration, etc. The benefit of bringing so many unique programs together is the resulting diverse portfolio, with scientists, E/PO professionals, and their education partners all of whom can focus on excellent smaller programs. The drawback is a less cohesive program nearly impossible to evaluate in its entirety with the given funding. When individual components were evaluated, we found our programs mostly made positive impact. In this paper, we elaborate on the programs, hoping that others will effectively use or improve upon them. When possible, we indicate the programs’ effects on their target audiences. 相似文献
14.
D. McComas F. Allegrini F. Bagenal P. Casey P. Delamere D. Demkee G. Dunn H. Elliott J. Hanley K. Johnson J. Langle G. Miller S. Pope M. Reno B. Rodriguez N. Schwadron P. Valek S. Weidner 《Space Science Reviews》2008,140(1-4):261-313
The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. To meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft. 相似文献
15.
The High Energy Telescope for STEREO 总被引:1,自引:0,他引:1
T. T. von Rosenvinge D. V. Reames R. Baker J. Hawk J. T. Nolan L. Ryan S. Shuman K. A. Wortman R. A. Mewaldt A. C. Cummings W. R. Cook A. W. Labrador R. A. Leske M. E. Wiedenbeck 《Space Science Reviews》2008,136(1-4):391-435
The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ~13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ~100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ~0.7–6 MeV. 相似文献
16.
The space-based Solar and Heliospheric Observatory (SOHO) is a joint venture of ESA and NASA within the frame of the Solar Terrestrial Science Programme (STSP), the first Cornerstone of ESA's long-term programme Space Science — Horizon 2000. The principal scientific objectives of the SOHO mission are: a) a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) a better insight into the physical processes that form and heat the Sun's corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a payload consisting of 12 sets of complementary instruments which are briefly described here. 相似文献
17.
A novel arrangement is proposed to enhance the power generating capabilities of a spin stabilized geostationary satellite (spinner). The unilluminated solar array area of the usual spinner (as sunlight falls on only one side) is illuminated by employing despun optical solar reflectors. The different mechanisms required for implementation of this arrangement are already space proven. The detailed study of this arrangement made by the authors reveals that the practical realization of this concept will enhance the power generating capability of the spinner and simultaneously reduce the weight (per unit power) and cost (per unit power) in such spinners. 相似文献
18.
A novel arrangement is proposed to enhance the power generation capabilities of a gravitationally stabilized solid-state-satellite solar-power station (GSS4PS) spherical solar collector. The unilluminated portion of a GSS4PS is illuminated by employing optical solar reflectors. The different mechanisms required for implementation of this arrangement are already space proven. The detailed study of this arrangement made by the authors reveals that practical realization of this concept will enhance the power generation capability of the GSS4PS and simultaneously reduce the weight per unit power and cost per unit power in GSS4PS spherical solar collectors. 相似文献
19.
The Solar Dynamo 总被引:1,自引:0,他引:1
It is generally accepted that the strong toroidal magnetic fields that emerge through the solar surface in sunspots and active regions are formed by the action of differential rotation on a poloidal field, and then stored in or near the tachocline at the base of the Sun’s convection zone. The problem is how to explain the generation of a reversed poloidal field from this toroidal flux—a process that can be parametrised in terms of an α-effect related to some form of turbulent helicity. Here we first outline the principal patterns that have to be explained: the 11-year activity cycle, the 22-year magnetic cycle and the longer term modulation of cyclic activity, associated with grand maxima and minima. Then we summarise what has been learnt from helioseismology about the Sun’s internal structure and rotation that may be relevant to our subject. The ingredients of mean-field dynamo models are differential rotation, meridional circulation, turbulent diffusion, flux pumping and the α-effect: in various combinations they can reproduce the principal features that are observed. To proceed further, it is necessary to rely on large-scale computation and we summarise the current state of play. 相似文献
20.
Observations relevant to current models of the solar dynamo are presented, with emphasis on the history of solar magnetic activity and on the location and nature of the solar tachocline. The problems encountered when direct numerical simulation is used to analyse the solar cycle are discussed, and recent progress is reviewed. Mean field dynamo theory is still the basis of most theories of the solar dynamo, so a discussion of its fundamental principles and its underlying assumptions is given. The role of magnetic helicity is discussed. Some of the most popular models based on mean field theory are reviewed briefly. Dynamo models based on severe truncations of the full MHD equations are discussed. 相似文献