共查询到20条相似文献,搜索用时 15 毫秒
1.
Jessica M. Sunshine Michael F. A’Hearn Olivier Groussin Lucy A. McFadden Kenneth P. Klaasen Peter H. Schultz Carey M. Lisse 《Space Science Reviews》2005,117(1-2):269-295
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging
from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations
of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates,
organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements
at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This
article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral
data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission. 相似文献
2.
Deep Impact Mission Design 总被引:1,自引:0,他引:1
William H. Blume 《Space Science Reviews》2005,117(1-2):23-42
The Deep Impact mission is designed to provide the first opportunity to probe below the surface of a comet nucleus by a high-speed
impact. This requires finding a suitable comet with launch and encounter conditions that allow a meaningful scientific experiment.
The overall design requires the consideration of many factors ranging from environmental characteristics of the comet (nucleus
size, dust levels, etc.), to launch dates fitting within the NASA Discovery program opportunities, to launch vehicle capability
for a large impactor, to the observational conditions for the two approaching spacecraft and for telescopes on Earth. 相似文献
3.
C. M. Lisse M. F. A’Hearn T. L. Farnham O. Groussin K. J. Meech U. Fink D. G. Schleicher 《Space Science Reviews》2005,117(1-2):161-192
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules
and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface
temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply
dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics
of the coma, as well as with its variability with time, orbital position, and heliocentric distance.
The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive
measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several
gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986.
This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current
state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards
that the coma presents for the spacecraft.
An erratum to this article is available at . 相似文献
4.
基于稀疏光流的无人机自主导航方案 总被引:1,自引:0,他引:1
提出了在无已知地面合作目标的情况下,给出高精度导航信息的基于稀疏光流的无人机(UAV)自主导航方案。通过计算两帧图像间的稀疏光流场,融合捷联惯导系统(INS)/电子罗盘/高度表系统/激光测距仪等传感器测量数据,构造两个H∞滤波器,分别对高度、姿态角与水平面上的速度误差进行估计。本导航方案适用于诸如无人机低空飞行阶段、进近阶段等不宜布置人工或已知地面合作目标的场合。使用自主开发的"无人机自主着陆实时仿真验证平台"对该方案进行仿真,结果显示本方案能够有效地抑制惯导系统由于漂移而造成的位置估计误差,同时可以给出精确的高度、速度与姿态角估计值。 相似文献
5.
6.
7.
Peter C. Thomas Joseph Veverka Michael F. A’Hearn Lucy Mcfadden Michael J. S. Belton Jessica M. Sunshine 《Space Science Reviews》2005,117(1-2):193-205
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and
structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact
data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological
issues of cometary nuclei. 相似文献
8.
Peter H. Schultz Carolyn M. Ernst Jennifer L. B. Anderson 《Space Science Reviews》2005,117(1-2):207-239
The NASA Discovery Deep Impact mission involves a unique experiment designed to excavate pristine materials from below the
surface of comet. In July 2005, the Deep Impact (DI) spacecraft, will release a 360 kg probe that will collide with comet
9P/Tempel 1. This collision will excavate pristine materials from depth and produce a crater whose size and appearance will
provide fundamental insights into the nature and physical properties of the upper 20 to 40 m. Laboratory impact experiments
performed at the NASA Ames Vertical Gun Range at NASA Ames Research Center were designed to assess the range of possible outcomes
for a wide range of target types and impact angles. Although all experiments were performed under terrestrial gravity, key
scaling relations and processes allow first-order extrapolations to Tempel 1. If gravity-scaling relations apply (weakly bonded
particulate near-surface), the DI impact could create a crater 70 m to 140 m in diameter, depending on the scaling relation
applied. Smaller than expected craters can be attributed either to the effect of strength limiting crater growth or to collapse
of an unstable (deep) transient crater as a result of very high porosity and compressibility. Larger then expected craters
could indicate unusually low density (< 0.3 g cm−3) or backpressures from expanding vapor. Consequently, final crater size or depth may not uniquely establish the physical
nature of the upper 20 m of the comet. But the observed ejecta curtain angles and crater morphology will help resolve this
ambiguity. Moreover, the intensity and decay of the impact “flash” as observed from Earth, space probes, or the accompanying
DI flyby instruments should provide critical data that will further resolve ambiguities. 相似文献
9.
James E. Richardson H. Jay Melosh Natasha A. Artemeiva Elisabetta Pierazzo 《Space Science Reviews》2005,117(1-2):241-267
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based
laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently,
impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis.
Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and
formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering
theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the
surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic
characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding
the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived
ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched
from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s
gravity field and by extension the mass and density of comet Tempel 1. 相似文献
10.
高空长航时无人机高精度自主定位方法 总被引:1,自引:1,他引:1
针对传统基于轨道动力学模型及非线性滤波进行间接敏感地平天文导航定位方法在实际应用中的局限性,提出了一种适用于高空长航时无人机自主导航定位的快速间接敏感地平天文解析定位新方法。分析了星光折射视高度天文量测的机理,导出天文三维定位的解析表达式,详细阐述了利用最小二乘微分校正法代替非线性滤波的天文定位方法,通过直接求解非线性量测方程组即可得到飞行器的精确位置信息,并对这种定位方法的定位精度进行了理论分析。该天文定位方法利用了星光折射间接敏感地平精度高的特点,又不需要飞行器动力学模型也不需要任何先验知识,算法简单可靠,计算量小,而定位精度与传统方法相当。最后,通过计算机仿真,验证了这种天文定位方法的有效性。 相似文献
11.
L. A. Mcfadden M. K. Rountree-Brown E. M. Warner S. A. M Claughlin J. M. Behne J. D. Ristvey S. Baird-Wilkerson D. K. Duncan S. D. Gillam G. H. Walker K. J. Meech 《Space Science Reviews》2005,117(1-2):373-396
The Deep Impact mission’s Education and Public Outreach (E/PO) program brings the principles of physics relating to the properties
of matter, motions and forces and transfer of energy to school-aged and public audiences. Materials and information on the
project web site convey the excitement of the mission, the principles of the process of scientific inquiry and science in
a personal and social perspective. Members of the E/PO team and project scientists and engineers, share their experiences
in public presentations and via interviews on the web. Programs and opportunities to observe the comet before, during and
after impact contribute scientific data to the mission and engage audiences in the mission, which is truly an experiment. 相似文献
12.
13.
从无人机自主进场着陆的功能需求分析出发。探讨了无人机自主进场着陆控制系统的智能递阶控制结构的组成,并对系统的各关键功能模块进行了较详细的分析,提出了精确4D航迹规划及跟踪控制的一种新方法。 相似文献
14.
15.
16.
导弹速度时变的攻击时间与攻击角度控制导引律 总被引:2,自引:0,他引:2
针对导弹速度非定常情况下的协同制导问题,提出了两种分别满足攻击时间约束、攻击时间与攻击角度约束的导引律.首先通过求解导弹在比例导引(PN)及带攻击角度约束的偏置比例导引(BPNIAC)下的系统微分方程,得到导弹飞行的实际剩余航程,并根据指定的攻击时间与导弹的实际速度曲线构造标称剩余航程,将攻击时间控制问题转化为导弹实际剩余航程对标称剩余航程的跟踪问题.然后,在PN及BPNIAC的基础上附加反馈控制项使导弹实际的剩余航程跟踪标称值,从而实现导弹速度时变情况下攻击时间的控制要求.仿真结果验证了该方法的有效性,实际应用中可根据预测速度曲线及在线更新策略对标称剩余航程进行估算. 相似文献
17.
L. Colangeli J. J. Lopez-Moreno P. Palumbo J. Rodriguez M. Cosi V. Della Corte F. Esposito M. Fulle M. Herranz J. M. Jeronimo A. Lopez-Jimenez E. Mazzotta Epifani R. Morales F. Moreno E. Palomba A. Rotundi 《Space Science Reviews》2007,128(1-4):803-821
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted
to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the
dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and
time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation
or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The
coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma
evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure
mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties
in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts
demonstrate that GIADA is behaving as expected according to the design specifications.
The International GIADA Consortium (I, E, UK, F, D, USA). 相似文献
18.
USB与VLBI联合确定“探测一号”卫星轨道 总被引:6,自引:0,他引:6
我国绕月探测工程“嫦娥一号”卫星将以统一S波段(USB)为主,辅以甚长基线干涉仪(VLB I)测轨分系统来完成测控任务。由于“探测一号”卫星轨道与“嫦娥一号”调相轨道段相似,有关单位于2005年3月17日—20日进行了USB和VLB I联合跟踪“探测一号”试验。通过对联合测轨数据的处理,研究了USB—VLB I联合定轨方法,分析了联合定轨和预报精度,得出了一些结论。 相似文献
19.
For flight control systems with time-varying delay, an H1 output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the ef... 相似文献
20.
为了研究激光切割和机械加工两种方法在钣金件切边中对工件的影响,采用激光切割和机械加工两种方法制作拉伸试件,并利用CMT6000微机控制电子万能试验机在常温条件下完成了拉伸试验.通过对试验结果的分析整理完成了两种方法的对比,结果表明:激光切割试件和机械加工试件得到的两组拉伸曲线在颈缩后有明显区别,激光切割的试件在拉伸过程中没有明显颈缩,且延伸率明显小于机械加工试件的延伸率. 相似文献