首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

2.
3.
Low-energy termination shock particle populations observed by the Voyagers upstream of the shock exhibited strong field-aligned beaming with anisotropies of the order of unity. The Parker transport equation is valid only for nearly isotropic phase space distributions and is inapplicable to these highly beamed populations. The usual approach is to revert to the more general focused transport equation retaining pitch-angle information. We developed a complimentary technique employing a three-moment expansion of the Skilling equation using Legendre polynomials. We investigate the effects of adiabatic focusing and reflection on the diffusive acceleration process at oblique shock waves. It is shown that low-energy particle intensities are discontinuous and sharply peaked at the shock, consistent with the observations. Particle spectra are not only harder than the power laws predicted from diffusive transport theory, but also exhibit spectral gaps near the low-energy acceleration threshold due to more efficient acceleration by scattering and mirroring. Our model also predicts upstream anisotropies as high as 100% for highly oblique shocks whereas downstream distributions are nearly isotropic.  相似文献   

4.
Voyager 1 crossed the solar wind termination shock on December 16, 2004 at a distance of 94 AU from the Sun, to become the first spacecraft to explore the termination shock region and to enter the heliosheath, the final heliospheric frontier. By the end of 2006, Voyager 1 will be at ∼101 AU, with Voyager 2 at ∼81 AU and still approaching the termination shock. Both spacecraft have been observing the modulation of galactic and anomalous cosmic rays since their launch in 1977. The recent observations close to or inside the heliosheath have provided several interesting ‘surprises’ with subsequent theoretical and modeling challenges. Examples are: what does the modulation of galactic cosmic rays amount to in this region?; how do the anomalous cosmic rays get accelerated and modulated?; why are there ‘breaks’ in the power-law slopes of the spectra of accelerated particles? Several numerical models have been applied to most of these topics over the years and comprehensive global predictions have been made the past decade, thought to be based on reasonable assumptions about the termination shock and the heliosheath. Examples of these predictions and assumptions are concisely discussed within the context of the main observed features of cosmic rays in the vicinity of the termination shock, ending with a discussion of some of the issues and challenges to cosmic ray modeling in particular.  相似文献   

5.
The cosmic ray source spectrum produced by AGN (active galactic nucleus) jets is calculated. A distinctive feature of these calculations is the account for the jet distribution on kinetic energy. The expected cosmic ray spectrum at the Earth is determined with the use of a simple numerical code which takes into account interactions of ultra-high energy protons and nuclei with the background radiation in an expanding universe.  相似文献   

6.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   

7.
    
The observation of the directional distribution of energetic and cosmic ray particles has been done with the Voyager spacecraft over a long period. Since 2002, when the first flux enhancements of charged particles associated with the approach of Voyager 1 to the solar wind termination shock were observed, these anisotropy measurements have become of special interest. They play an important role to understand the magnetic field and shock structure and the basics of the modulation of cosmic ray and anomalous particles at and beyond the termination shock. They also serve as motivation to study the spatial behavior of galactic and anomalous cosmic ray anisotropies with numerical modulation models in order to illustrate how the radial anisotropy, at different energies, change from upstream to downstream of the termination shock. Observations made by Voyager 1 indicate that the termination shock is a complicated region than previously thought, hence the effects of the latitude dependence of the termination shock’s compression ratio and injection efficiency on the radial anisotropies of galactic and anomalous protons will be illustrated. We find that the magnitude and direction of the radial anisotropy strongly depends on the position in the heliosphere and the energy of particles. The effect of the TS on the radial anisotropy is to abruptly increase its value in the heliosheath especially in the A > 0 cycle for galactic protons and in both polarity cycles for anomalous protons. Furthermore, the global effect of the latitude dependence of the shock’s compression ratio is to increase the radial anisotropy for galactic protons throughout the heliosphere, while when combined with the latitude dependence of the injection efficiency this increase depends on modulation factors for anomalous protons and can even alter the direction of the radial anisotropy.  相似文献   

8.
    
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   

9.
The different types of the data recorded in the experiment of the regular balloon monitoring of cosmic rays (carried out since 1957 by Lebedev Physical Institute, Moscow, Russia, in several locations) are described. So called detailed information (the form of each pulse detected by the ground-based receiver) recorded during the last 12 years is discussed in more details. The use of these data both for getting and correcting the standard results of the experiment and for obtaining some additional information on the cosmic rays in the Earth’s atmosphere is considered.  相似文献   

10.
11.
As many great discoveries, the phenomenon of cosmic rays was discovered mainly accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. We describe the history how step by step cosmic rays was discovered and why this phenomenon received misnomer, how in cosmic rays was discovered the first antiparticle – positron. These discoveries were recognized among greatest in the 20th Century and were awarded by Nobel Prize.  相似文献   

12.
We show that the higher range of the heliolongitudinal asymmetry of the solar wind speed in the positive polarity period (A > 0) than in the negative polarity period (A < 0) is one of the important reasons of the larger amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity in the period of 1995–1997 (A > 0) than in 1985–1987 (A < 0). Subsequently, different ranges of the heliolongitudinal asymmetry of the solar wind speed jointly with equally important corresponding drift effect are general causes of the polarity dependence of the amplitudes of the 27-day variation of the GCR intensity. At the same time, we show that the polarity dependence is feeble for the last unusual minimum epoch of solar activity 2007–2009 (A < 0); the amplitude of the 27-day variation of the GCR intensity shows only a tendency of the polarity dependence. We present a three dimensional (3-D) model of the 27-day variation of GCR based on the Parker’s transport equation. In the 3-D model is implemented a longitudinal variation of the solar wind speed reproducing in situ measurements and corresponding divergence-free interplanetary magnetic field (IMF) derived from the Maxwell’s equations. We show that results of the proposed 3-D modeling of the 27-day variation of GCR intensity for different polarities of the solar magnetic cycle are in good agreement with the neutron monitors experimental data. To reach a compatibility of the theoretical modeling with observations for the last minimum epoch of solar activity 2007–2009 (A < 0) a parallel diffusion coefficient was increased by ∼40%.  相似文献   

13.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   

14.
A study of daily variations of secondary Cosmic Rays (CR) is performed using data on charged and neutral CR fluxes. Particle detectors of Aragats Space-Environmental Center (ASEC), Space Environmental Viewing and Analysis Network (SEVAN) and neutron monitors of the Neutron Monitor Database (NMDB) are used. ASEC detectors continuously register various species of secondary CR with different threshold energies and incident angles. NMDB joins data of 12 Eurasian neutron monitors. Data at the beginning of the 24th solar activity cycle are used to avoid biases due to solar transient events and to establish a benchmark for the monitoring of solar activity in the new started solar cycle.  相似文献   

15.
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues.  相似文献   

16.
Some unknown historical facts of cosmic ray studies in the north-east of the former Soviet Union related to the Yakutsk scientific group are reported for the benefit of the international scientific community. It focuses on the founders of Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of Russian Academy of Sciences. A chronology of measurements of cosmic ray intensity variations since 1949 in Yakutia (Sakha Republic; NE Siberia) is given. In particular, for the first time the data of the first solar cosmic ray event registered at Yakutsk (GLE04), with a small ionization chamber S-2 (volume: 20 L) are presented. Moreover, the data of the large ionization chamber ASK-1 (volume: 950 L) for the 1953–2003 period useful for specialists in the field of cosmic ray variations are also shown.  相似文献   

17.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

18.
19.
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex.  相似文献   

20.
Two phenomena connected with the maximum phase of the 11-year solar cycle in the galactic cosmic ray intensity – the change in the energy dependence of the intensity variations and the double-peak structure in the intensity modulation time profile – are considered for the last five solar cycles (Nos. 19–23). The distinct 22-year cycle in the magnitude of the so called energy hysteresis is observed.The periods of the solar cycle maximum phase in the galactic cosmic ray intensity, characterized by the specific energy dependence of the intensity, are estimated. It is found that the double-peak structures belonging to the solar cycle maximum phase and those around it are very similar both in the amplitude and in its energy dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号