首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.  相似文献   

2.
Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.  相似文献   

3.
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.  相似文献   

4.
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.  相似文献   

5.
On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.  相似文献   

6.
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.  相似文献   

7.
The relative behavioral effectiveness of heavy particles was evaluated. Using the taste aversion paradigm in rats, the behavioral toxicity of most types of radiation (including 20Ne and 40Ar) was similar to that of 60Co photons. Only 56Fe and 93Nb particles and fission neutrons were significantly more effective. Using emesis in ferrets as the behavioral endpoint, 56Fe particles and neutrons were again the most effective; however, 60Co photons were significantly more effective than 18 MeV electrons. These results suggest that LET does not completely predict behavioral effectiveness. Additionally, exposing rats to 10 cGy of 56Fe particles attenuated amphetamine-induced taste aversion learning. This behavior is one of a broad class of behaviors which depends on the integrity of the dopaminergic system and suggests the possibility of alterations in these behaviors following exposure to heavy particles in a space radiation environment.  相似文献   

8.
The effects of exposure to heavy particles on behaviors mediated by the central nervous system (CNS) are qualitatively different than the effects produced by exposure to other types of radiation. One behavior mediated by the CNS is the amphetamine-induced taste aversion, which is produced by pairing a novel tasting solution with injection of amphetamine. When the conditioning day is three days following irradiation, exposing rats to low doses of 56Fe particles (600 MeV/n or 1 GeV/n) eliminates the taste aversion produced by injection of amphetamine, which is dependent upon the integrity of the central dopaminergic system, but has no effect on the aversion produced by injection of lithium chloride which is mediated by the gastrointestinal system. In contrast to the effects obtained using heavy particles, exposing rats to 60CO gamma rays or to fission spectrum neutrons has no selective effect upon the acquisition of either amphetamine- or lithium chloride-induced taste aversions. When the conditioning day occurs four months following exposure to 1 GeV/n 56Fe particles, there is an enhancement of the amphetamine-induced taste aversion. The implications of these findings for approaches to risk assessment are considered.  相似文献   

9.
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.  相似文献   

10.
Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.  相似文献   

11.
Heavy ions are a hazard in manned deep space missions. It has been theoretically postulated that when they interact with cells, localized damage in the forms of "microlesions" may occur. Purported morphological evidence of these lesions, however, has not been confirmed in the most extensively studied tissue so far, the cornea. Recent morphological evidence from rat corneas demonstrated that holes in membranes do not form as consequence of heavy ion irradiation. This does not mean, however, that some other form of damage is excluded. For example such damage may be physiological in nature, impairing the ability of cells or tissues to function properly. In order to uncover any physiological effects, we investigated the microlesion question by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of 56Fe ions (450 and 600 MeV/a.m.u.), we detected no effect on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.  相似文献   

12.
We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed.  相似文献   

13.
Eight month old male C57BL6 mice were exposed without anesthesia to whole-body irradiation in circular holders. The mice were tested for behavioral decrements after 0.5 and 50 rads of Fe particle irradiation at 6 and 12 months post irradiation to obtain long term results. A standard maze was used and the animals were timed for completion thereof. A string test also was administered to the mice, testing their ability to grasp and move along a string to safety. The results from animals exposed to 50 rads were significantly different from [correction of fron] control results to p = < .001 in both systems of testing. The hippocampus (believed to be the location of environmental interaction in the brain) and the retina were examined for ultrastructural changes. The ultrastructural changes were similar to those we found in our Cosmos 782, 936 and in our Argon experiments. The mouse data indicate that iron particles were able to induce long term changes in the central nervous system which lead to behavioral impairment.  相似文献   

14.
Lenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/micrometer to 953 keV/micrometer and fluences from 1.31 10(3)/mm2 to 4.99 x 10(7)/mm2. 60Co gamma-rays were used as the reference radiation. The doses ranged from 10 to 40 cGy. The lenses were assessed 64 weeks post irradiation in order to observe the late effects of LET and dose on the target cell population of the lens epithelium. Our study shows that growth dependent pathological changes occur at the cellular level as a function of dose and LET. The shapes of the RBE-LET and RBE-dose curves are consistent with previous work on eye and other biological systems done in both our laboratory and others. The RBEmax's were estimated, for the most radiation cataract related cytological changes, MN frequency and MR disorganization, by calculating the ratio of the initial slopes of dose effect curve for various heavy ions to that of 60Co gamma-ray. For each ion studied, the RBEmax derived from micronucleus (MN) frequency is similar to that derived from meridional row (MR) disorganization, suggesting that heavy ions are equally efficient at producing each type of damage. Furthermore, on a per particle basis (particle/cell nucleus), both MN frequency and MR disorganization are LET dependent indicating that these classic precataractogenic indicators are multi-gene effects. Poisson probability analysis of the particle number traversing cell nuclei (average area = 24 micrometers2) suggested that single nuclear traversals determine these changes. By virtue of their precataractogenic nature the data on these endpoints intimate that radiation cataract may also be the consequence of single hits. In any case, these observations are consistent with the current theory of the mechanism of radiation cataractogenesis, which proposes that genomic damage to the epithelial cells surviving the exposure is responsible for opacification.  相似文献   

15.
In cells irradiation by heavy ions has been hypothesized to produce microlesions, regions of local damage. In cell membranes this damage is thought to manifest itself in the form of holes. The primary evidence for microlesions comes from morphological studies of cell membranes, but this evidence is still controversial, especially since holes also have been observed in membranes of normal, nonirradiated, cells. However, it is possible that damage not associated with histologically discernable disruptions may still occur. In order to resolve this issue, we developed a system for detecting microlesions based on liposomes filled with fluorescent dye. We hypothesized that if microlesions form in these liposomes as the result of irradiation, then the entrapped dye will leak out into the surrounding medium in a measurable way. Polypropylene vials containing suspensions of vesicles composed of either dipalmitoyl phosphatidylcholine, or a combination of egg phosphatidylcholine and cholesterol were irradiated at the Brookhaven National Laboratory using 56Fe ions at 1 GeV/amu. In several cases we obtained a significant loss of the entrapped dye above the background level. Our results suggest that holes may form in liposomes as the result of heavy ion irradiation, and that these holes are large enough to allow leakage of cell internal contents that are at least as large as a 1 nm diameter calcein molecule.  相似文献   

16.
Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If however, as the so-called "Microlesion Theory" allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, "tunnel-lesions" or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. On-going light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu 56Fe ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.  相似文献   

17.
Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.  相似文献   

18.
The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.  相似文献   

19.
Losses of photoreceptor cells (rods) from the retinas of New Zealand white (NZW) rabbits were detectable within 2 years after localized acute irradiation of optic and proximal tissues with > or = 7 Gy of 530 MeV u-1 40Ar ions or > or = 2 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition. Those limits were determined only from an analysis of variance of dose groups because the shapes of the dose response curves at early post-irradiation times are not known, a concern being addressed by experiments in progress. Losses of photoreceptor cells for the period 0.5-2.5 years post-irradiation, determined by provisional linear regression analysis, were approximately 1.7% Gy-1 and 2.5% Gy-1 for 40Ar and 56Fe ions, respectively.  相似文献   

20.
This review surveys data in the literature and our own findings concerning the effects of weightlessness on bones and muscles of white rats flown on Cosmos biosatellites and Spacelab-3. It has been shown that the magnitude and sign of functional changes in muscles depend on their biomechanical profile. Structural and metabolic foundations of functional adaptation and its dynamics have been identified: in 5-7 day flights muscle contractility changes are mainly associated with a diminished activity of excitation-contraction coupling, in longer-term flights they are produced by changes in myosin populations specific for myofibers of different functional profile. At early flight stages (up to 1 week) osteoporosis and bone demineralization are very mild; therefore decrease in bone mechanical strength may be caused by changes in physico-chemical parameters of the collagen-crystal system. In flights of up to 3 weeks noticeable osteoporosis develops which is primarily produced by osteogenesis inhibition and which is responsible for a marked decrease of bone strength. These changes may result from uncoupling of bone resorption and remodelling processes. This uncoupling is characterized as incomplete osteogenesis and may be caused by changes in the collagen composition of the organic bone matrix. The above-mentioned adaptive changes in muscle functions of specific skeletal compartments may play a role in different responses of various bones to weightlessness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号