首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic levitation-based Martian and Lunar gravity simulator.   总被引:2,自引:0,他引:2  
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity.  相似文献   

2.
While experiments carried out in Space with isolated cells have shown that eucaryotic cells are able to sense and respond to the absence of gravity by modifying their reactions, experiments in which more complex processes have been investigated, such as Biological Systems undergoing development under Microgravity, have been surprisingly unaffected by the space environment. This can be considered a curious result since all organisms are evolutionarily adapted to the current level of the gravity force in our planet and should eventually change if this parameter will vary in a permanent manner. In fact, the small effects of the modifications in gravity on development in short term experiments may be equivalent to the difficulties in detecting the involvement of other basic physical processes such as diffusion-controled auto-organizative reactions in currently developing biological systems. An apparent exception to this lack of effect is experiments where brine shrimp dormant gastrulae directly exposed to the space environment accumulate developmental defects as a consequence of cosmic irradiation. In this article we discuss the idea that at a certain stage during the evolutionary emergence of multicellular organisms the cues laid by generic forces such as gravity were involved in the evolutionary organization of these primitive organisms. As evolution proceed, these early mechanisms may have been obscured and/or made redundant by the appearance of new internal, environment-independent biological regulatory mechanisms. On the other hand, behavioral responses that may be important, for example, in setting the life-spans of organisms may still be more readily susceptible to manipulation by external cues as experiments carried out by our group in Space and on the ground with Drosophila melanogaster indicate.  相似文献   

3.
Physico-chemical characteristics of biomembranes and cell gravisensitivity.   总被引:1,自引:0,他引:1  
The resistance of living systems to the action of environmental factors is known to be largely determined by molecular organization of biomembranes constituting the basis of the cell per se and of all intracellular organelles. Gravity as one of the environmental factors, plays a definite role in the vital activity of organisms. Therefore, the problem of altered gravity impact on biological objects should be considered in close relation to the functional state of membranes and contractible elements of cytoskeleton. Moreover, the involvement of membrane structures and cytoskeleton in the processes of reception and realization of gravitational stimulus allows us to evaluate the extent of the direct or indirect influence of gravity on cell functioning in the gravitational field. The results of experimental studies having been conducted up to this time on a variety of cells and cell organelles under altered gravity conditions demonstrated noticeable alterations in the molecular organization of the membranes.  相似文献   

4.
Characteristics and accuracies of the GRACE inter-satellite pointing   总被引:1,自引:0,他引:1  
For almost 10 years, the Gravity Recovery and Climate Experiment (GRACE) has provided information about the Earth gravity field with unprecedented accuracy. Efforts are ongoing to approach the GRACE baseline accuracy as there still remains an order of magnitude between the present error level of the gravity field solutions and the GRACE baseline. At the current level of accuracy, thorough investigation of sensor related effects is necessary as they are one of the potential contributors to the error budget. In the science mode operations, the twin satellites are kept precisely pointed with their KBR antennas towards each other. It is the task of the onboard attitude and orbit control system (AOCS) to keep the satellites in the required formation. We analyzed long time series of the inter-satellite pointing variations as they reflect the AOCS performance and characteristics. We present significant systematic effects in the inter-satellite pointing and discuss their possible sources. Prominent features are especially related to the magnetic torquer characteristics, star cameras’ performance and KBR antenna calibration parameters. The relation between the magnetic torquer attitude control and the Earth magnetic field, impact of the different performance of the two star camera heads on the attitude control and the features due to uncertainties in the calibration parameters relating the star camera frame to K-frame are discussed in detail. Proper understanding of these effects will help to reduce their impact on the science data and subsequently increase the accuracy of the gravity field solutions. Moreover, understanding the complexity of the onboard system is essential not only for increasing the accuracy of the GRACE data but also for the development of the future gravity field satellite missions.  相似文献   

5.
Any plants grown during long-term space missions will inevitably experience an extremely low magnetic field (i.e. a hypogeomagnetic field, HGMF). It is possible that the innate adaptation of plants to the earth’s magnetic field (i.e. the geomagnetic field, GMF) would be disrupted. Effects of the HGMF on plant physiological and metabolic processes are unclear. In this study we established a hypogeomagnetic incubation system on the ground and investigated the effects of the HGMF on the gravitropism and germination of soybean seeds. The gravitropism angle, germination percentage, germination speed, water absorbance ratio, seed weight, radicle length, radicle weight, and radicle weight ratio of soybean seeds grown in the local field and the HGMF were compared. In general, the gravitropism angle in the HGMF was smaller than that in the local field when seeds were positioned before emergence in such a way that the direction of the radicle was opposite to that of gravity. The germination percentage, germination speed, and radicle weight ratio increased in the HGMF compared to the control. Our results indicate that the germination and gravitropism of soybean seeds are affected by elimination of the geomagnetic field.  相似文献   

6.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

7.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

8.
Chinese scientists studied some of the problems in the field of space life science and achieved success in the area during 2000-2001. Space biological experi ments were carried out in the orbit and the results of ground studies on protein crystallization, space radiation, space motion sickness were introduced in this paper. The influences of simulated weightlessness on the brain-function, the car diovascular, endocrine hormones, immunity, skeletal and muscle systems were presented. In addition, gravity medicine and space environment medicine, as well as countermeasures to space deconditioning, such as the traditional Chinese medicine, were also reported.  相似文献   

9.
Microtubule self-organisation depends upon gravity.   总被引:3,自引:0,他引:3  
The molecular processes by which gravity is transduced into biological systems are poorly, if at all, understood. Under equilibrium conditions, chemical and biochemical structures do not depend upon gravity. It has been proposed that biological systems might show a gravity dependence by way of the bifurcation properties of certain types of non-linear chemical reactions that are far-from-equilibrium. We have found that in-vitro preparations of microtubules, an important element of the cellular cytoskeleton, show this type of behaviour. On earth, the solutions show macroscopic self-ordering, and the morphology of the structures that form depend upon the orientation of the sample with respect to gravity at a critical moment at an early stage in the development of the self-organised state. An experiment carried out in a sounding rocket, showed that as predicted by theories of this type, no self-organisation occurs when the microtubules are assembled under low gravity conditions. This is an experimental demonstration of how a very simple biochemical system, containing only two molecules, can be gravity sensitive. At a molecular level this behaviour results from an interaction of gravity with macroscopic concentration and density fluctuations that arise from the processes of microtubule contraction and elongation.  相似文献   

10.
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.  相似文献   

11.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

12.
This paper summarizes and provides a critical analysis of the historical developments of lunar gravitational models from the earliest use of ground based tracking systems of the Lunar Orbiter to the Lunar Prospector mission. This encompasses a comprehensive and critical analysis of the various methods used in the estimation of the gravity coefficients and the processing of large batches of diverse measurements and data types. It has been shown that weakness exists in the current models of the lunar gravity field, which is primarily due to the lack of far side lunar tracking data information, which makes the lunar potential modeling difficult but expected to be overcome as data from SELENE satellite-to-satellite tracking becomes available. Comparisons of various lunar models reveal an agreement in the low order coefficients of the spherical harmonics. However, substantial differences in the models exist in the higher-order harmonics. A numerical comparison has been presented showing the performance of all the contemporary lunar gravitational models used within the astrodynamics community and available in public domain. Improvements to the current models are part of a continuing process and the recent model improvements and future possibilities in lunar gravity modeling are discussed. A brief review of the recent missions has been presented. It is hoped that this critical review will benefit the researchers by presenting the historical as well as state of the art in this field.  相似文献   

13.
We report successful levitation of large water droplets and mice using a newly built variable gravity simulator. The simulator consists mainly of a superconducting magnet with a room temperature accessible experimental levitating space. The superconducting magnet generates a field and field gradient product that is large enough to levitate water and many other common liquids. The warm bore of the magnet has a diameter of 66 mm, large enough to levitate small mammals. We demonstrate that water drops up to 50 mm in diameter and young mice can be levitated in the system. The capability of levitating large water drops and biological systems offers new opportunities for conducting detailed and in-depth study of properties of fluids and biological systems in reduced gravity environments.  相似文献   

14.
The preflare structure, prior to two-ribbon flares, is thought to consist of magnetic field arcades. As a first approximation, the magnetic field is assumed to be invariant along the length of the arcade. The ideal MHD stability of such structures is studied using the energy method. The dense photosphere is simulated by line-typing the magnetic field and a discussion of boundary conditions is presented. Using the energy method, sufficient conditions for stability are obtained for certain magnetohydrostatic fields that also include the effect of gravity. Under certain circumstances, these conditions become necessary and sufficient. Some comments on resistive effects are mentioned.  相似文献   

15.
Influence of different natural physical fields on biological processes.   总被引:1,自引:0,他引:1  
In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus (Proteus vulgaris), spatial disorientation in coleoptiles of Wheat (Triticum aestivum) and Pea (Pisum sativum) seedlings, mutational changes in Crepis (Crepis capillaris) and Arabidopsis (Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.  相似文献   

16.
Orbital potential field measurements are sensitive to regional variations in earth density and magnetization that occur over scales of a few hundred kilometers or greater. Global field models currently available are able to distinguish gravity variations of ±5 milligal over distances of ~1,000 km and magnetic variations of ±6 gamma over distances of ~300 km at the earth's surface. Regional variations in field strength have been detected in orbital measurements that are not apparent in higher resolution, low altitude surveys. NASA is presently studying a spacecraft mission known as GRAVSAT/MAGSAT, which would be the first satellite mission to perform a simultaneous survey of the earth's gravity and magnetic fields at low orbital altitudes. GRAVSAT/MAGSAT has been proposed for launch during the latter nineteen-eighties, and it would measure gravity field strength to an accuracy of 1 milligal and magnetic field strength to an accuracy of 2 gamma (scalar)/5 gamma (vector components) over a distance of roughly 100 km. Even greater improvements in the accuracy and spatial resolution of orbital surveys are anticipated during the nineteen-nineties with the development of potential field gradiometers and a tethered satellite system that can be deployed from the Space Shuttle to altitudes of 120 km above the earth's surface.  相似文献   

17.
The exposure of astronauts and electronics to the cosmic radiation especially to the particle component pose a major risk to all space flights. Up to now it is not possible to quantify this risk within acceptable limits of accuracy. This uncertainty is not only caused by difficulties in the more or less exact prediction of the incidence of the cosmic radiation but depends also on the problem of the quantification of the radiation field and the correlation of the biological effect. Usually the biological action of a mixed radiation field is estimated as product of the measured dose with an average quality factor, the relative biological efficiency. Because of the large variation in energy and atomic number of the cosmic particles, average values of the quality factor are not precise for risk estimation. A more appropriate way to treat the biological effects of mixed radiation is the concept of particle fluence and action cross section.  相似文献   

18.
The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.  相似文献   

19.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   

20.
An efficient regenerative life Support system for manned base cannot be conceived without biological processes. Therefore since the 1960's, numerous projects have been initiated to close, as far as possible, the biological loop. Based on the selected concepts (i.e. carbon and/or nitrogen cycles, microbial organisms and/or higher plants) mathermatical models have been studied and built. Unfortunately, to our knowledge these robust models do not take into account the effects of the space environment (i.e. reduced gravity, radiation,…). In the past, a large number of scientific studies has been performed to understand these effects but only a few of them have tried to quantify them. In this paper we present a very simplified concept of an ecosystem. Its objectives, which are compatible with a non-pressurised mission, are on one hand to quantify microbial kinetics and on the other hand to demonstrate the validity of several technologies and technical concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号