首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The X-38 Project forms part of the “X” prototype vehicle family developed by the United States. Its development was initiated by NASA to prepare the Crew Return Vehicle (CRV). The European participation in the X-38 Program has been significantly extended since the start of the X-38 cooperation in 1997 and is realized by ESA's “Applied Reentry Technology Program” and the German/DLR “Technologies for Future Space Transportation Systems” (TETRA) Project. European contributions to the X-38 Vehicle 201, (V-201) can be found in all technical key areas. The orbital flight and reentry with the X-38 V-201 will conclude the X-38 project in 2002.The CRV will be used from about mid-2005 as ’ambulance‘, ’lifeboat‘ or as alternate return vehicle for the crew of the International Space Station. Recognizing the very productive and mutually beneficial cooperation established on X-38, NASA and ESA have decided to continue this cooperation into the development of the operational CRV. The Phase C/D will be completed shortly after the Critical Design Review, scheduled for August 2002. The CRV production phase will start in October 2002 and will cover production of four CRV vehicles, ending in 2006.Based on the objective to identify a further evolution potential of the CRV towards a Crew Cargo Transfer Vehicle (CCTV), NASA has implemented upgrade studies in the CRV Phase C/D.  相似文献   

2.
John D. Rummel   《Acta Astronautica》2009,64(11-12):1293-1297
“Special regions” on Mars are areas designated in the COSPAR planetary protection policy as areas that may support Earth microbes inadvertently introduced to Mars, or that may have a high probability of supporting indigenous martian life. Since absolutely nothing is known about martian life, the operational definition of a special region is a place that may allow the formation and maintenance of liquid water, on or under the surface of Mars. This paper will review the special-regions concept, the implications of recent recommendations on avoiding them, and the work of the Mars science community in providing an operational definition of those areas on Mars that are “non-special.”  相似文献   

3.
On board the orbital complex “Salyut-6-Soyuz” during long-term near 0-gravity space flight the technological experiments on synthesis of the superconducting MoGa5, MO3Ga and Nb3Sn intermetallic compounds by means of liquid-phase diffusion and on bulk crystallization of the hypoeutectic superconducting Pb-Sn alloy and magnetically ordered Gd3Co and (Gd0.2Tb0.8)3Co compounds have been performed. During the process of the liquid-phase diffusion considerable changes of the formation of the reaction layers (mechanisms, phase composition, thickness, etc.) in the superconducting Mo-Ga and Nb-Sn systems were observed. MoGa5, Nb6Sn5 and NbSn2 phases were found in the ground-based samples while in the flight samples the formation of MoGa5, Mo3Ga, Nb3Sn and Nb6Sn5 phases was observed. As a result of the changes of the phase composition of the diffusion layers in the flight samples two superconducting transitions at 18.3 and 5.7 K were established (only one transition at 6.9K was measured for the ground-based sample) (Savitsky et al., Izv. Akad. Nauk SSSR, Metals5, 224–232, 1982; Zemskov et al., Izv. Akad. Nauk SSSR, Physics49, 673–680, 1985). Considerable increasing of the critical current measured for the Pb-Sn flight sample has been observed (Savitsky et al., Dokl. Akad. Nauk SSSR257, 102–104, 1981; Zemskov et al., 1985). Better homogeneity and crystal structure perfection of the flight Gd3Co and (Gd0.2Tb0.8)3Co samples have been established by means of the micro-zonde and low-temperature X-ray technique (Savitsky et al., Acta Astronautica11, 691–696, 1984; Zemskov et al., 1985). Different behaviour of the ground-based and flight samples in the process of magnetization and the displacements of the temperatures of the magnetic phase transitions have been observed.  相似文献   

4.
The Finnish officer and mathematician E. E. Neovius published, in 1875, a booklet in which he proposed a method to contact the inhabitans of Mars, using light signals projected to Mars with huge beacons. He constructed a message where the meaning of signals gradually rises from arithmetical concepts to logic and physics of the Solar System. The book was translated to French and Russian, but was forgotten when more sceptical attitudes replaced the optimistic views of intelligent life on Mars. Neovius’ philosophy of interplanetary communication relied upon ideas current in the 19th century. A “principle of analogy” seemed to guarantee the existence of planetary systems around the stars, and these planets must be inhabited like the Earth. Moreover, intelligence, knowledge and even science must be similar in the whole universe, whence no fundamental obstacle prevents a mutual understanding. In both respects, Neovius’ optimism has been replaced with more critical views.  相似文献   

5.
The impact of confirmation of life outside the small ecosphere we call Earth will be profound on the terran population as a whole. The “Declaration Of Principles Concerning Activities Following The Detection Of Extraterrestrial Intelligence” and the IAA Position Paper “A Decision Process for Examining the Possibility of Sending Communications To Extraterrestrial Civilizations: A Proposal” provide a firm basis for the development of a new body of space law. It is important that space law design and prepare for implementation of a protocol to guide the nations of the world concerning the search for extraterrestrial intelligence (SETI), through the advice and cooperation of scientists, jurisprudential, philosophical, political and sociological scholars. Through the IAA, the IISL, the United Nations and other organizations, formal documentation should be drafted to encode the Declaration of Principles and IAA Position Paper referred to above. In this way, a body of metalaw can be developed to enable human communication with non-terrestrial life. This paper discusses the philosophical and sociological parameters of terran understanding of our place in the universe which will dramatically impact jurisprudential thought and action in light of the realization of the infinitesimally small niche that humankind occupies. A discussion of these interdisciplinary concerns will be necessary to realize a metalegal approach to interstellar communications and relations.  相似文献   

6.
The trajectory of and the flow field behind blast waves with time varying energy input is determined. Freeman's (1968) Lagrangean coordinate formulation is modified to include both the geometric factor, α, for plane, cylindrical and spherical shocks and also non-integer values of β, the energy input parameter, in a single computational algorithm. Numerical problems associated with vanishing density at the inner mass boundary or “piston face” are then examined and solved. Second order perturbation solutions about the solution for an infinite strength shock are then obtained in Sakurai's (1965) inverse shock Mach number expansion parameter for 0 β < α + 1. Tables and graphs of significant numerical coefficients are presented for comparison to, and extension of, results of other authors. Graphs of typical shock trajectories and flow field density, pressure and velocity variations are also presented and discussed.  相似文献   

7.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

8.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

9.
The literature on the history of spaceflight has depicted the early 1950s Colliers articles mostly as a forerunner to the peaceful and scientific exploration of space. Yet the centerpiece of Wernher von Braun's plan was a manned space station that would serve as reconnaissance platform and orbiting battle station for achieving “space superiority” over the USSR. One its roles could be the launching of nuclear missiles. When challenged as to the station's defensibility, von Braun even posited pre-emptive atomic strikes from space as a response to the development of a hostile anti-satellite capability.  相似文献   

10.
This paper models the combustion of a turbulent homogeneous mixture of propane and air within a duct having a stationary one-dimensional mean flow. The Bray-Moss model is applied to the closure of the chemical production terms, using a probability density function (pdf) of the temperature which is chosen as the characteristic variable. Under the conditions chosen for the study, chemical kinetic factors are important and the conventional assumption, that heat release is controlled by turbulent mixing, is not valid. The chemical model of Edelman and Fortune for the combustion of hydrocarbons is used and simplifying assumptions are made which reduce the systems of unknowns to that of the temperature alone. This leads to the introduction of two chemical production terms which are defined respectively in a “delay zone”, where the heat release is modest, and a “combustion zone”. The required equations for the Favre-averaged temperature, turbulence kinetic energy and the mean square fluctuation of the temperature are solved numerically. In the delay zone, a comparison is made between a second order Borghi type closure and the pdf closure. Good agreement is found in the case of relatively small turbulence intensity. It is shown that the pdf formulation does not require the two zones to be spatially distinct. Differing chemical source terms can be discriminated instantaneously by the reaction progress variable and contributions to the average production terms appropriately apportioned by its pdf. Predictions are made of the profiles of mean temperature and mean square fluctuation under different initial turbulence levels.  相似文献   

11.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   

12.
The Space Agency Forum (SAF) met for its 10th plenary meeting in Bremen on 30 September 2003. Its motto was “Space Agencies and the UN System”. Following various presentations on relevant issues, including the UN Space Applications Programme and the follow-up of UNISPACE III, SAF members discussed their participation in these fields. The meeting resulted in a number of inputs to these issue areas and coordinated approaches vis-à-vis policy questions.  相似文献   

13.
When designing the radio-electronic equipment for long-term operation in a space environment, one of the most important problems is a correct estimation of radiation stability of its electric and radio components (ERC) against radiation-stimulated doze failures and one-particle effects (upsets). These problems are solved in this paper for the integrated microcircuits (IMC) of various types that are to be installed onboard the Fobos-Grunt spacecraft designed at the Federal State Unitary Enterprise “Lavochkin Research and Production Association.” The launching of this spacecraft is planned for 2009.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 237–239.Original Russian Text Copyright © 2005 by Kuznetsov, Popov, Khamidullina.  相似文献   

14.
A powerful statistical tool, paired-comparison, was tested as a method to determine the relative value American people place on two possibly competing paradigms in the United States Space Program: “Space as a Place to Explore” and “Civil and Commercial Uses of Space”. A limitation of the results, but not the methodology, is the participants were college students, not “voting” adults. Reliability and validity of items were developed and tested in two studies suggesting that the paired-comparison method is a reliable and powerful tool for measuring the relative value the public may place on programs within the US Space Program.  相似文献   

15.
16.
Experimental results are reported for small signal gain distribution across a cavity of a mixed flow gasdynamic laser system at different turbulent supersonic mixing regimes. It is shown that the temperature range of the GDL generation regime can be extended up to 7000°K, and gain coefficients as high as 3.5 m−1 be attained in a “double-freeze” supersonic gas flow. Basic advantages are discussed as well as the opportunity to obtain higher efficiencies in thermally pumped laser systems.  相似文献   

17.
The special theory of relativity rests on the assumption that in no case can the speed of light be exceeded. Rather surprisingly, however, recent advances in the general theory of relativity show that Faster-Than-Light (FTL) travel is allowed by Einstein’s gravitational theory. An explanation of this apparent contrast between special and general relativity lies in the fact that general relativity uses non-linear differential equations and non-Euclidean spacetime geometry that special relativity does not. Therefore, this larger mathematical armoury makes room for a whole new class of very subtle and unexpected relativistic phenomena to come to light. One of these is the Theory of Wormholes, more politely termed Tunnels into Space–Time. In 1988, Kip S. Thorne and Michael S. Morris published a path-breaking paper about Wormholes showing how spaceflight between two stars might be possible in a time of hours if a “tunnel” dug into space–time exists between them. However, they also showed that keeping the tunnel open for the spaceship to travel through would require a kind of matter, called “exotic” by them, that does not appear to exist in nature, because its tensional strength would have to exceed the energy density of its matter. This request is a severe constraint to the natural existence of Morris–Thorne Wormholes, or even to their artificial construction by an advanced civilization. In 1995, however, the present author sought to replace the exotic matter in a Morris–Thorne Wormhole by a very intense magnetic field. Such “Magnetic Wormholes” could indeed exist because very intense magnetic fields are already known to exist on the surface of neutron stars and pulsars. This paper discusses the consequences on SETI of the possible existence of Magnetic Wormholes. Phenomena of divergent gravitational lensing might possibly occur in the proximity of pulsars and neutron stars. These effects could help us detect signals from very far civilisations by virtue of ordinary SETI techniques already in use.  相似文献   

18.
19.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

20.
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the “Closed Equilibrated Biological Aquatic System” (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to “near weightlessness conditions” (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i . e. that the plants exhibited biomass production rates identical to the ground controls and that as well the reproductive, and the immune system as the the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle fligt (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiments and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the short-term space experiments with the C.E.B.A.S. MIMI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated “reproduction module” for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号