首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental and theoretical models of closed "autotroph-heterotroph" (chlorella-yeast, chlorella-protozoa) ecosystems with spatially separated components have been created and studied. The chart of flows and interaction of components of gas-closed "chlorella-yeast" system have formed the basis describe mathematically the functioning of the given system, experimental results have been found to agree with computer solution of the problem in terms of quality. Investigation of the experimental model of the "producer-consumer" trophic chain demonstrated the role of protozoa in nitrogen turnover. "Production-decomposition" and "production-grazing-decomposition" cycle models has been theoretically analyzed and compared. The predator has been shown to be a more intensive mineralizer than the reducer component.  相似文献   

2.
Using biotic turnover of substances in trophic chains, natural and artificial ecosystems are similar in functioning, but different in structure. It is necessary to have quantitative criteria to evaluate the efficiency of artificial ecosystems (AES). These criteria are dependent on the specific objectives for which the AES are designed. For example, if AES is considered for use in space, important criteria are efficiency in use of mass, power, volume (size) and human labor and reliability. Another task involves the determination of quantitative criteria for the functioning of natural ecosystems. To solve the problem, it is fruitful to use a hierarchical approach suitable for both individual links and the ecosystem as a whole. Energy flux criteria (principles) were developed to estimate the functional activities of biosystems at the population, community and ecosystem levels. A major feature of ecosystems as a whole is their biotic turnover of matter the rate of which is restricted by the lack of limiting substances. Obviously, the most generalized criterion is to take into account the energy flux used by the biosystem and the quantity of limiting substance included in its turnover. The use of energy flux by ecosystem, E(USED)--is determined from the photoassimilation of CO2 by plants (per time unit). It can be approximately estimated as the net primary production of photosynthesis (NPP). So, the ratio of CO2 photoassimilation rate (sometimes, measured as NPP) to the total mass of limiting substrate can serve as a main universal criterion (MUC). This MUC characterizes the specific cycling rate of limiting chemical elements in the system and effectiveness of every ecosystem including the global Biosphere. Comparative analysis and elaboration of quantitative criteria for estimation of natural and artificial ecosystems activities is of high importance both for theoretical considerations and for real applications.  相似文献   

3.
An experimental model of matter turnover in the biotic cycle: plants (plant biomass) --> mushrooms (residual substrate + mushroom fruit bodies) --> worms (biohumus) --> microorganisms (soillike substrate) --> plants is presented. The initial mass of soillike substrate was produced from wheat plants grown in a hydroponic system. Three cycles of matter turnover in the biotic cycle were carried out. Grain productivity on soillike substrate was 21.87 g/m2 day. The results obtained were used for designing a CES containing man, plants, soillike substrate, bioregeneration module and aquaculture. It was shown, that the circulating dry mass of the CES is 756 kg. The main part (88%) of the circulating mass accumulates in the soillike substrate and bioregeneration module.  相似文献   

4.
The anthropogenic impact on the Earth's ecosystems are leading to dramatic changes in ecosystem functioning and even to destruction of them. System analysis and the use of heuristic modeling can be an effective means to determine the main biological interactions and key factors that are of high importance for understanding the development of ecosystems. Cycling of limiting substances, induced by the external free energy flux, and trophic links interaction is the basis of the mathematical modeling studies presented in this paper. Mathematical models describe the dynamics of simplified ecosystems having different characteristics: 1) different degrees of biotic turnover closure (from open to completely closed); 2) different numbers of trophic links (including both "top-down", "bottom-up" regulation types); 3) different intensities of input-output flows of the limiting nutrient and its total amount in the system. Adaptive values of the changes of lower hierarchical levels (populational, trophic chain level) are to be estimated by integrity indices for total system functioning (e.g. NPP, total photosynthesis). The approach developed can be used for evaluating the contributions of lower hierarchical levels to the functioning of the higher hierarchical levels of the system. This approach may have value for determining biomanipulation management and their assessment.  相似文献   

5.
Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together "holistic" and "merological" approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of "ecosystems health" concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. Grant numbers: N 99-04-96017, N25.  相似文献   

6.
Studying material transformations and biotic cycling in artificial ecosystems (AES), we need to know the principles of biological adaptation of active organisms to change in the environment. Microorganisms in AES for water purification are the most active transforming organisms and consumers of the organic substances contained in wastes. Utilization of organic substances is directly connected with the energy fluxes used by AES. According to energy criteria, the energy fluxes used by a biological system tend to reach maximum values under stable conditions. Unutilized substrate concentration decreases as a result of biological adaptations. After a dramatic change in environmental factors, for example, after a sharp increase in the flow rate of organic substances, the biological system is not able to react quickly. The concentration of unutilized substrate increases and the energy flux used by the biological system decreases. The structure of the microbial community also changes, with a decrease in biological diversity. The efficiency of energy use by simple terrestrial ecosystems depends on the energetic intensity and interactions between plants and rhizospheric microorganisms.  相似文献   

7.
A "producer-consumer" (Chlorella vulgaris-Paramecium caudatum) closed aquatic system has been investigated experimentally and theoretically. It has been found that there is a direct relationship between the growth of the paramecia population and their release of ammonia nitrogen, which is the best form of nitrogen for Chlorella growth. The theoretical study of a model of a "producer-consumer" aquatic biotic cycle with spatially separated compartments has confirmed the contribution of paramecia to nitrogen cycling. It has been shown that an increase in the concentration of nitrogen released as metabolites of paramecia is accompanied by an increase in the productivity of microalgae.  相似文献   

8.
The main unifying feature of natural and artificial ecosystems is their biotic turnover (cycling) of substances which is induced with energy fluxes. A new integrating scientific discipline – Biospherics – studies biotic cycles (both in experiments and in mathematical models) of different degree of closure and complexity. By its origin, Biospherics is to be connected with extensive studies of Biosphere by Russian academician Vladimir Vernadsky. He developed and used “empirical generalizations” based on innumerous observations, comparisons and reflections. His “bio-geo-chemical principles” of Biosphere and ecosystems development have more qualitative than quantitative nature. Quantitative criteria to evaluate the efficiency of natural and artificial ecosystems are to take into account energy fluxes and their use in ecosystems of different types. At least, three of them are of value for estimation of natural and artificial ecosystems’ functional activities. Energy principle of extensive development (EPED), energy principle of intensive development (EPID) and main universal (generalized) criterion (MUC). The last criterion (Principle) characterizes the specific cycling rate of limiting chemical elements in multi-organism systems, developing under external energy fluxes. Its value can be a quantitative measure of effectiveness for every ecosystem functioning, including our global Biosphere. Different examples of these (above-mentioned) integrated criteria actions are presented and analyzed in the paper.  相似文献   

9.
Simulated planetary atmospheres (mixtures of simple gases) were irradiated with high energy particles to simulate an action of cosmic rays. When a mixture of carbon monoxide, nitrogen and water was irradiated with 2.8-40 MeV protons, a wide variety of bioorganic compounds including amino acids, imidazole, and uracil were identified in the products. The amount of amino acids was proportional to the energy deposit to the system. Various kinds of simulated planetary atmospheres, such as "Titan type" and "Jovian type", were also irradiated with high energy protons, and gave amino acids in the hydrolyzed products. Since cosmic rays are a universal energy source in space, it was suggested that formation of bioorganic compounds in planetary atmospheres is inevitable in the course of cosmic evolution.  相似文献   

10.
This study addresses competition between the Paramecium bursaria and zoochlorella-endosymbiosis and the infusoria Paramecium caudatum in a closed aquatic system. The system is a natural model of a simple biotic cycle. P. bursaria consumes glucose and oxygen released by its zoochlorella and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. P. caudatum was fed on bacteria. It was shown that the infusoria P. bursaria united in one cycle with Chlorella had a higher competitive ability than P. caudatum. With any initial percentage of the infusoria in the mixed culture, the end portion of P. bursaria reached 90-99%, which was significantly higher than the end potion of the P. caudatum population. It is assumed that the sustenance expenditures of P. caudatum were greater than those of the endosymbiotic paramecium, i.e. the closing of the components into a biotic cycle leads to a decrease in sustenance expenditures.  相似文献   

11.
The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.  相似文献   

12.
生态学研究发现,多种食饵选择对捕食者-食饵系统的稳定性、持久性等方面有着重要的影响。处于食物链中间层的种群,既是顶层捕食者的食饵,同时又是捕食者,因此中间捕食者的种群数量变化,对整个生态系统有着不可忽略的影响。假设中间捕食者具有其他可供选择的食饵,建立了一个由顶级捕食者、中间捕食者和食饵所构成的三维食物链系统,并对此系统展开动力学分析,推导出系统各个平衡点的存在性和稳定性条件。对Hopf分支的存在性条件进行了深入的分析,并以食饵选择参数为分支参数,对可能出现的Hopf分支情况进行了数值模拟。结合理论和数值结果,分析食饵选择性对食物链系统的稳定性产生的影响。   相似文献   

13.
本文用谱截断方法研究了磁层顶剪切磁流体的非线性性态。结果表明:流场扰动会使系统出现剪切不稳定(K-H不稳定)性;系统具有对初值的敏感性,这是导致湍动而使磁层顶动力学性态难以预测的根本原因;流场粘性及流场与磁场的相互作用使能量与动量在流场与磁场中转化和传输;外界能流通过粘性与耦合作用可周而复始地在系统中传递。   相似文献   

14.
An approach to searching for extraterrestrial life on the base of "autotroph" concept of the origin of life is presented in the paper. According to this concept the origin of life took place in three stages. The first stage was developed inside the global geochemical cycle in which the turnover of different chemical transformations was implemented by solar radiation and/or heat energy of bowels of the Earth. At the second stage, after the autocatalytic systems have emerged these systems evolved as a result of "natural selection" by autocatalysis parameters up to emergence of special inheritance systems that drastically improved the autocatalysis parameters. The best in terms of autocatalysis parameters were the autocatalysis systems based on phase-separated particles where complex structures can form not only on the basis of covalent interactions. Such autocatalysis systems can emerge only in liquid in a certain range of temperatures and pressures. At this stage the geochemical cycle complicated involving new substances. At the third stage the evolution involved improvement of inheritance systems resulting in formation of the modern type of genetic apparatus. This concept formed the basis to consider approaches to experimental modeling of major aspects of the origin of life and to outlining some general features of life that can extend the sensitive horizon of searching for extraterrestrial life.  相似文献   

15.
General properties of accretion onto isolated stellar-mass black holes in the Galaxy are discussed. An analysis of plasma internal energy growth during the infall is performed. Adiabatic heating of collisionless accretion flow due to magnetic adiabatic invariant conservation is 25% more efficient than in the standard non-magnetized gas case. It is shown that magnetic field line reconnections in discrete current sheets lead to significant nonthermal electron component formation, which leads to a formation of a hard (UV, X-ray, up to gamma), highly variable spectral component in addition to the standard synchrotron optical component first derived by Shvartsman generated by thermal electrons in the magnetic field of the accretion flow. Properties of accretion flow emission variability are discussed. Observation results of two single black hole candidates – gravitational lens MACHO-1999-BLG-22 and radio-loud X-ray source with featureless optical spectrum J1942+10 – in optical band with high temporal resolution are presented and interpreted in the framework of the proposed model.  相似文献   

16.
Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on "man-higher plants" system with two crewmen, plants covered 63 m2, with wheat planted to--39.6 m2. For 103 days, complete human urine (total amount--210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased.  相似文献   

17.
A mathematical model was used to investigate the effect of cannibalism intensity on the net primary production and the dynamics of trophic links in an aquatic ecosystem characterized by cannibalism at the upper trophic level. A mathematical model of an aquatic ecosystem has been constructed, with the following principal trophic links: limiting nutrient concentration, producers (phytoplankton), nonpredatory and predatory zooplankton. The model takes into account the age structure of the predator and includes two age groups (the young and adults). The adult predators are cannibals feeding on both nonpredatory zooplankton and their own young, which consume phytoplankton. It has been found that when cannibalism intensity increases above a certain level, the concentrations of both adults and the young of the predators decrease. At the same time, the concentrations of the nonpredatory zooplankton and of nutrients increase, while the biomass of producers decreases. When the cannibalism intensity is low, the net primary production of the system increases to a certain level correlated with the increase in cannibalism intensity and drops sharply when the level of consumption of young is high. There is an optimal intensity of cannibalism, at which the productivity in the photosynthesis link is maximal.  相似文献   

18.
Based on irradiation with 45 MeV/u N and B ions and with Co-60 gamma rays, cellular parameters of Katz's track structure model have been fitted for the survival of V79-379A Chinese hamster lung fibroblasts. Cellular parameters representing neoplastic transformations in C3H10T/1/2 cells after their irradiation with heavy ion beams, taken from earlier work, were also used to model the radiation hazard in deep space, following the system for evaluating, summing and reporting occupational exposures proposed in 1967 by a subcommittee of NCRP. We have performed model calculations of the number of transformations in surviving cells, after a given fluence of heavy charged particles of initial energy 500 MeV/u, penetrating thick layers of cells. We take the product of cell transformation and survival probabilities, calculated along the path lengths of charged particles using cellular survival and transformation parameters, to represent a quantity proportional to the "radiation risk factor" discussed in the NCRP document. The "synergistic" effect of simultaneous charged particle transfers is accounted for by the "track overlap" mode inherent in the model of Katz.  相似文献   

19.
小推力发动机高空羽流场数值模拟   总被引:5,自引:1,他引:5  
以小推力发动机的高空羽流场为研究对象,完成了氮气流的DSMC方法数值模拟研究,对计算的可靠性进行了实验对比验证,分析了高空羽流场特性及高空稀薄流动的非平衡效应。结果表明,用DSMC方法与加密网格技术结合可有效模拟高空羽流场,且必须计及气体非平衡效应。皮托压力的数值结果与实验符合得很好。  相似文献   

20.
This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and[8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号