首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以Y2 O3-Al2 O3和MgO -Al2 O3为烧结助剂体系 ,研究了烧结助剂体系及其含量对Cf/SiC复合材料密度与力学性能的影响。结果表明 ,以Y2 O3-Al2 O3为烧结助剂时 ,复合材料的力学性能优于烧结助剂为MgO -Al2 O3时复合材料的力学性能。当烧结助剂为Y2 O3-Al2 O3时 ,随着烧结助剂含量的增加 ,复合材料力学性能不断提高 ,断裂韧性在烧结助剂含量为 12 %时达到最大值 14.83MPa·m1/ 2 。进一步增加烧结助剂的含量 ,复合材料的抗弯强度虽有提高 ,但断裂韧性急剧降低。烧结助剂含量超过 15%后 ,抗弯强度也急剧降低。结果同时证明 ,复合材料的断裂行为取决于纤维 /基体间的界面结合强度 ,即纤维 /基体间的界面结合情况是决定纤维增强陶瓷基复合材料力学性能的关键因素  相似文献   

2.
利用三种蒙脱土(即S-MMT,TG-2,OLS,统称MMT)和一种短切纤维(Short-cutGlassFiber,简记为SGF),分别与酚醛树脂熔融混合,制得酚醛树脂基复合材料。通过缺口冲击实验和弯曲实验,对这些复合材料的力学性能和增强增韧机理进行了研究,取得了一些有规律性的结果。PF/NBR/SGF复合材料的缺口冲击强度、弯曲强度和弯曲模量都随SGF含量的增加而增大;PF/NBR基蒙脱土纳米复合材料的缺口冲击强度随纳米材料(即S-MMT,TG-2和OLS)含量的增加而增大,在含量为5份时达到最大值;弯曲强度和弯曲模量也随纳米材料含量的增加而增大,在含量为9份时达到最大值。其次,所有PF/NBR基复合材料的缺口冲击强度均在60℃取得最大值,PF/NBR/OLS,PF/NBR/TG-2,PF/NBR/S-MMT等三种纳米复合材料的力学性能与体系中蒙脱土的层间距密切相关。层间距越大,力学性能越好。最后,探讨了纳米蒙脱土增强增韧PF/NBR体系的机理,指出聚合物体系中的蒙脱土具有两种效应,并建立了模型。  相似文献   

3.
石墨烯增强铝基纳米复合材料研究进展   总被引:2,自引:0,他引:2  
石墨烯以其优异力学、物理性能以及独特二维结构成为铝基复合材料的理想纳米增强相.金属基纳米复合材料制备技术快速发展,促进了石墨烯增强铝基纳米复合材料在结构和功能材料领域中的广泛研究.石墨烯在铝基体中的分散以及石墨烯/铝的界面控制问题具有重要科学研究和工程应用价值.重点介绍石墨烯增强铝基纳米复合材料最新研究进展,主要包括石墨烯增强铝基纳米复合材料的分散和冶金成型技术及其结构表征和力学性能研究.实验表明石墨烯能够显著提高铝基体力学性能,但作者认为通过优化工艺参数、改善微观结构和控制结合界面能够进一步优化材料性能.此外,为实现工程应用,还需加强石墨烯增强铝基复合材料的腐蚀性能和热、电性等物理性能研究,并突破材料的低成本、大规模制备技术.本文还基于石墨烯独特二维结构和表面状态,对石墨烯的增强增韧机制进行了深入讨论.  相似文献   

4.
短碳纤维增韧石英复合材料性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以短碳纤维为初始原料,采用溶胶一凝胶技术引入SiO2组分,在一定的热压烧结制度下得到致密Cf/SiO2复合材料;研究了其烧结条件、力学性能、线膨胀及烧蚀性能。实验表明,基体保持非晶态,可达到99%的致密度;随碳纤维含量的增加,弯曲强度(σf)无显著变化,断裂韧性(KIC)先升后降;线膨胀系数随碳纤维含量增加而增加,该材料具有良好的抗热震及耐烧蚀性能。  相似文献   

5.
碳化硅颗粒增强铝基复合材料的研究   总被引:2,自引:0,他引:2  
采用加压浸渗法成功制备了SiC_p/Al(纯)复合材料,探讨了加压浸渗工艺并测定了复合材料的力学性能。试验结果表明,向SiC颗粒内加入适量添加剂后制成的预制件,更有利于铝液的渗透,从而能有效地提高复合材料的强度。试验结果还表明,在本试验范围内(SiC颗粒体积分数30%~50%,颗粒粒径0.1~5μm),复合材料的强度随SiC百分含量的增加而增加,随SiC颗粒粒径的减小而呈上升趋势。  相似文献   

6.
以Y2O3-Al2O3和MgO-Al2O3为烧结结助剂体系,研究了烧结助剂体系及其含量对Cf/SiC复合材料密度与动力学性能的影响,结果表明,以Y2O3-Al2O3为烧结助剂时,复合的力学性能优于烧结肋剂为MgO-Al2O3时复合材料的力学性能,当烧结助剂为Y2O3-Al2O3时,随着烧结助剂含时的增加,复合材料力学笥能不断提高,断裂韧性在烧结助剂含量为12%时达到最大值14.83MPa.m^1/2,进一步增中烧结助剂的含量,复合材料的抗弯强度叶有提高,但断裂韧性急剧降低,烧结助剂含量超过15%后,抗弯强度也急剧降低,结果同时证明,复合材料的断裂行为取决于纤维/基体间的界面结合强度,即纤维/基体间的界面结合情况是决定纤维增强陶瓷基复合材料力学笥能的关键因素。  相似文献   

7.
SiC含量对Ti3SiC2/SiC复合材料性能的影响   总被引:3,自引:0,他引:3  
采用反应热压烧结法制备了Ti3SiC2/SiC复合材料,针对SiC含量对该复合材料致密化程度、力学性能以及应力.应变行为的影响进行了研究.结果表明:(1)随着SiC含最的增加,试样难于致密,试样需要在更高的温度才能达到较高的致密度;(2)随SiC含量的增加,Ti3SiC2/SiC复合材料弯曲强度和断裂韧性提高,但SiC含量达到50%时,由于复合材料含有较多的孔洞,使强度和断裂韧性降低;(3)Ti3SiC2/SiC复合材料在常温下表现为非脆性断裂.  相似文献   

8.
飞机电气化、信息化程度的不断提高,对航空电缆提出了更高的要求,常规铝导体的性能不能满足新型航空电缆对轻质、高强、高导电性能的需求。石墨烯具备极高的强度和导电率,是理想的高强高导改性材料。首先对比了现有电工铝和电工铜在力学性能和导电率上的差距;随后讨论了石墨烯优异的力学和电学性能;最后综述了石墨烯在改善铝基体力学性能和电学性能方面的研究进展。结果表明,采用粉末冶金、连铸连轧等制备工艺,石墨烯能有效提高铝基体的拉伸强度,同时有望保持延伸率不降低,但也会使导电率降低0.5%~4%;只有实现石墨烯在铝基体中的连续分布,才能充分发挥出石墨烯高导电率的优势,提高铝基体的电学性能。采用粉末冶金和连铸连轧等工艺手段,牺牲少量导电率,通过石墨烯大幅提高铝导体的力学性能,从而满足航空电缆的相关需求,将具备广阔的应用前景。  相似文献   

9.
采用机械合金化结合粉末冶金技术制备Ti-44.7Al-xLa-yCe(原子分数/%,下同)合金材料.利用扫描电镜和金相显微镜研究不同La,Ce添加量对机械合金化TiAl基合金的显微组织的影响,并对合金的力学性能进行测试.研究表明,通过机械合金化在TiAl基合金系统中添加微量稀土元素La,Ce对TiAl基合金的细化作用非常明显,TiAl的强度开始随着稀土元素La的增加而增加,当La元素含量为0.5%时,达到峰值,然后强度随稀土含量的增加而下降;而合金的强度却随添加Ce的含量的增加而直线下降,同时添加稀土La的TiAl合金的强度远高于加稀土Ce的TiAl合金的强度.  相似文献   

10.
 采用空心阴极等离子烧结工艺制备了Ti/Ni等原子比的Ti50-x/2Ni50-x/2Alx(x=0,3,6,9)合金,研究了Al含量对合金微观组织以及力学性能的影响。结果表明:未添加铝的合金微观组织主要由NiTi基体、强化相Ti2Ni、Ni3Ti及孔隙组成;随着Al含量的提高,合金中Ti2Ni(Al)数量不断增多,孔隙数量和孔径不断增加,Ni3Ti(Al)数量不断减少,在Ti45.5Ni45.5Al9中还生成了少量Ni2TiAl相;合金的抗弯强度随Al含量的提高而增加,并在Al含量为6%时达到最大值296.3 MPa;合金的硬度随铝含量的提高而增加,Ti45.5Ni45.5Al9的硬度值为295.6 HV。  相似文献   

11.
采用高能超声辅助铸造法制备Al-Cr金属间化合物/Al原位复合材料.利用扫描电镜观察复合材料中增强体颗粒的大小、形貌和分布,应用XRD、EDS对复合材料进行物相分析,并研究复合材料的硬度.结果表明:通过高能超声辅助铸造法制备的Al-Cr/Al原位复合材料中金属间化合物增强体颗粒呈多边形,尺寸较为细小,分布均匀;原位反应时Al和Cr首先生成Al0.983Cr0.017金属间化合物,随着Cr含量的增加,然后生成高Cr化合物;随着温度的升高,有利于更稳定、性能更好的化合物生成;这些金属间化合物会相互扩散,最终形成均匀的混合增强相,并保持Al,Cr的原子比例不变;复合材料的硬度随Cr含量的增加而增加,随Cr颗粒尺寸的增加而具有最大值,当Cr含量为10%,粒径为75 μm时,复合材料硬度增加了2.5倍.  相似文献   

12.
研究了连续石墨纤维和碳纤维增强镁基复合材料的线膨胀系数与纤维的弹性模量和体积含量之间的关系,研究结果表明,复合材料的线膨胀系数随着增强纤维弹性模量和体积含量的增加而减少,镁基复合材料比铝基复合材料具有更低的线膨胀系 数。  相似文献   

13.
石墨烯/铝复合材料具有强化效率高、强塑性协同提升、综合性能优异的特点,有望突破现有金属基复合材料强塑性匹配性差的瓶颈问题,但石墨烯的难于分散是困扰材料制备的重要问题。基于机械球磨工艺的片状粉末冶金技术可以将球状铝粉变成片状,实现石墨烯的均匀分散。本研究通过添加过程控制剂PDMS调控机械球磨过程,制备片状铝粉,结合压力浸渗技术制备0.6%(质量分数)GNPs/6061Al复合材料。结果表明:随着球磨时间延长,片状铝粉直径呈先上升后稳定的状态;随过程控制剂黏度上升,片状铝粉直径上升,铝粉片状化效果更明显,同时石墨烯缺陷含量先降低后上升。结合组织表征和力学性能测试,讨论了材料性能与组织结构间的关系。  相似文献   

14.
采用熔融共混的方式制备了不同短碳纤维含量增强含二氮杂萘酮聚芳醚酮(PPEK)基复合材料,对复合材料的加工性能、力学性能、摩擦性能、耐热性进行了研究。结果表明:短碳纤维增强复合材料均可以注塑成型;短碳纤维对PPEK的增强作用明显,拉伸强度和弯曲强度均有大幅提高;复合材料中短碳纤维起到了明显的自润滑作用,复合材料的摩擦系数和磨损率均随碳纤维含量的增加而明显降低;短碳纤维的加入进一步提高了复合材料的耐热性。  相似文献   

15.
《宇航材料工艺》2001,31(4):30-35
采用真空热压烧结工艺制备了碳纤维体积分数分别为20%、40%和60%的高致密Cf/SiO2复合材料,研究了碳纤维含量对其组织结构、力学性能、热膨胀特性和抗氧化性能的影响规律.结果表明SiO2基体及20%Cf/SiO2复合材料中,Si2仍保持非晶态,碳纤维含量为40%和60%时,Si2发生部分析晶;Cf/SiO2复合材料的抗弯强度、断裂韧性和断裂应变,随碳纤维含量增加均呈现先降低后又增加的趋势,而弹性模量则先增后降;60%Cf/Si2表现出明显伪塑性;碳纤维含量增大,使复合材料的热膨胀系数成倍增加,抗氧化性变差.  相似文献   

16.
硼酸铝晶须增强氰酸酯树脂/玻璃布复合材料的研究   总被引:7,自引:0,他引:7  
为了改善氰酸酯树脂基复合材料的层间性能,加入硼酸铝(AlBw)晶须制得晶须/氰酸酯树脂/玻璃布复合材料。研究了晶须对氰酸酯树脂的反应活性、工艺性的影响以及对复合材料力学性能的改善效果,并分析了复合材料断裂的SEM照片。凝胶时间和差示扫描量热(DSC)分析表明,晶须的加入对树脂体系反应性影响较小。晶须的加入增大了氰酸酯树脂的粘度,但增加幅度不大,当晶须加入质量为20%时树脂粘度仍小于8Pa·s,具有良好的工艺性。随晶须加入量的增加,复合材料的层间剪切强度(ILSS)和弯曲强度增大,晶须质量占10%时,4%硼酸酯处理的晶须使ILSS和弯曲强度分别提高45%和32%。晶须的加入使复合材料耐湿热性提高,水煮100h后,吸水率降为1.09%,力学强度保持率高于85%。  相似文献   

17.
采用溶胶凝胶和前驱体浸渍裂解混合工艺,制得了不同SiO_(2)/SiC比例的C/SiC-SiO_(2)复合材料,研究了SiO_(2)添加量对复合材料微观结构、力学性能的影响。结果表明:当添加SiO_(2)的质量分数约25%时,材料的拉伸强度和压缩强度与C/SiC材料性能相当;而当添加SiO_(2)的质量分数超过25%时,材料的强度与模量均随SiO_(2)含量的增加呈降低趋势。此外,SiO_(2)含量约25%的C/SiC-SiO_(2)复合材料的浸渍相成本较C/SiC材料降低约24%左右,这为C/SiC复合材料的快速低成本制备提供了新的技术支撑。  相似文献   

18.
刘壮  邱一  郭超  高长水 《航空制造技术》2020,63(8):38-45,67
碳化硅颗粒增强铝基复合材料(SiC_p/Al)具有优异的物理及力学性能,但是其二次加工极为困难。仿真和试验研究了SiC_p/Al复材的磨料电化学射流加工。结果表明,随着铝基体的去除,SiC增强体与铝基材之间的结合界面不断减小,界面的疲劳寿命随界面面积减小而呈现若干数量级式降低。当结合界面面积下降到较低水平时,SiC增强相会从基体材料上脱落,同时在加工表面留下微坑。加工表面的粗糙度与这些微坑的数量和尺寸高度相关。SiC增强相尺度越大或含量越高,则加工表面越粗糙。  相似文献   

19.
为了研究多重纳米结构对块体材料强化和变形能力的影响机制,采用粉末冶金法制备了多重纳米结构的B4C颗粒增强铝基复合材料,并对复合材料的强化和形变破坏机制进行了定量和定性的讨论。由100%球磨复合粉末制备的块体复合材料的室温压缩强度为670MPa;当加入10vol%气雾化态的Al2024粉末后,复合材料的室温压缩强度升高到1.115GPa;之后随着气雾化态Al2024粉末含量的增加,复合材料的强度逐渐下降,但是没有产生明显的塑性变形;当气雾化态Al2024粉末的含量增加到50vol%时,复合材料的压缩强度下降到580MPa,断裂前变形率达到了10%。扫描电镜(SEM)和透射电镜(TEM)的分析结果显示,亚微米级的B4C颗粒、位错以及纳米晶基体分别通过Orowan强化、位错强化和细晶强化机制对复合材料进行强化;粗晶Al2024区域与复合结构区域的比例显著影响复合材料的形变及破坏机制。  相似文献   

20.
Z-pin植入参数对X-Cor夹层复合材料力学性能的影响   总被引:5,自引:0,他引:5  
 X-Cor夹层复合材料是一种新型的Z-pin增强泡沫夹层结构,具有突出的比强度、比刚度。采用热压成型工艺,在不同的Z-pin植入参数下制备了X-Cor夹层复合材料,并对这种结构材料的平压和剪切力学性能进行了研究,考察了植入角度、植入密度、植入方向等参数的影响规律。结果表明,Z-pin植入参数对X-Cor夹层复合材料的平压性能和剪切性能影响显著。X-Cor夹层复合材料平压性能随Z pin植入角度和植入密度的增大而增加,植入角度达到90°时,X-Cor夹层复合材料平压强度及模量最大;剪切性能随Z-pin植入角度的增大而减小,实验范围内,植入角度为45°时,剪切强度和模量最大;同时,X桁架的植入方向对剪切性能也有很大影响,相同Z-pin植入密度下,沿试样长度方向植入的X桁架含量增加时,夹层复合材料的剪切模量增加;X-Cor夹层复合材料的平压性能和剪切性能随Z-pin植入角度的变化规律相反,Z-pin植入角度在60°~70°之间时,X-Cor夹层复合材料平压性能与剪切性能均达到较高值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号