首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
碳/硫(C/S)复合材料的硫负载方式调控可以改善聚硫化物的穿梭效应,提升锂-硫电池的容量。物理硫负载法容易导致循环过程中硫的脱落,化学硫负载法不利于倍率性能的提升。采用物理硫负载和化学硫负载相结合的方式,对提升C/S复合材料的循环稳定性和倍率性能具有重要意义。本文控制C/S复合材料的硫负载方式,研究化学硫负载制得的C/S复合材料在热处理前后的结构和性能变化,有利于实现稳定的聚硫化物转化,提升锂-硫电池循环稳定性和倍率性能。结果表明:C/S煅烧后复合电极具有较好的循环稳定性(5C下的容量保持率为60%)和倍率性能(60 mAh·g-1 20C),这是因为其具有稳定的聚硫化物转化能力。  相似文献   

2.
锂硫(Li-S)电池是一种新型二次电池,具有极高的理论比能量(2600 Wh/kg),被认为是最具前景的下一代储能电池。锂硫电池正极使用硫作为活性材料,比容量高达1675 mAh/g,是目前商业化锂离子电池正极材料磷酸铁锂(170 mAh/g)和钴酸锂(274 mAh/g)的3至5倍。此外,硫是地球上储量最丰富的元素之一,且成本低廉,环保无毒。然而,锂硫电池的商业化受制于硫及其放电产物多硫化锂的电子绝缘性、可溶性多硫化物在正负极的穿梭、充放电过程中硫的体积膨胀等问题。针对硫正极材料所存在的问题,本文从储硫、固硫、限硫的三重设计出发,通过在ZIF-67模板上原位生长制备了一种NiCo-LDH/Co9S8中空纳米笼结构的正极材料,实现活性硫的高容量负载。电化学测试表明,NiCo-LDH/Co9S8与硫复合实现了79 wt%的高硫负载量,LDH/Co9S8异质结纳米笼结构及双功能位点,能够使S@LDH/Co9S8电极实...  相似文献   

3.
随着社会发展,电动汽车、消费类(3C)电子产品、储能装置等对锂离子电池的能量密度提出了更高要求。富锂锰基正极材料具有高比容量(≈250 mAh/g)、高工作电压(≈3.6 V)及低成本等优势,有望成为下一代商用高比能电池正极材料。首次库仑效率低、倍率性能差、电压/容量衰减快等问题限制了富锂锰基正极材料的工程化应用。本文综述了富锂锰基正极材料的最新研究进展,重点从材料结构、电化学反应机理、失效机制和改性方法等几方面进行了阐述。研究表明,采用离子掺杂、表面包覆、晶体结构调控等技术,可显著改善富锂锰基正极材料的电化学性能。最后,对富锂锰基正极材料的发展方向进行了展望。  相似文献   

4.
针对锂/氟化碳电池放电过程产热问题,选用了3种不同型号的氟化碳材料,对材料的微观形貌、晶型和键型进行了分析,并使用等温量热仪测试了不同倍率下锂/氟化碳软包电池放电的产热功率和积分产热量,使用加速量热仪测量了锂/氟化碳电池的比热容。结果表明:氟化碳材料的放电电位与材料中C-F键的类型(键能)有关,进而影响电池放电过程中的产热量;C-F键偏离子型,放电电位越高,极化越小,放电过程中产热越少;锂氟化碳电池的放电倍率越大,电池的产热功率越大。  相似文献   

5.
透射电子显微镜研究三种碳-碳复合材料的微观结构   总被引:1,自引:0,他引:1  
前言 碳-碳复合材料是一种新型的防热烧蚀材料和耐磨材料,用于制造导弹鼻锥或喷管喉衬和飞机刹车片等部件。取决于实际使用的具体条件,对碳-碳复合材料的结构和性能将有不同的要求。采用不同的纤维和基体原料及不同的复合工艺,所得碳-碳复合材料将具有不同的结构和性能。本文着重总结我们利用日  相似文献   

6.
采用STM32F103VE为主控芯片,通过A/D及D/A转换和控制MOSFET的导通,实现电子负载功率模块的温度控制、0-5A的恒流放电及设置电源放电截止电压。通过测试,可实现0-5A恒流放电,可调精度为0.03A,并且实时显示放电电流、电源电压和放电时间。放电结束可显示放电容量,具有动态负载测试功能。测试结果表明,该电子负载容量测试误差在5%以内,结果精确,设计简易,方便使用。  相似文献   

7.
本文报道了金-氟化石墨自润滑复合镀层的电沉积工艺和影响复合镀层中氟化石墨含量的主要因素,并成功地研究出“HA-2”共沉积促进剂。 金-氟化石墨复合镀层的自润滑的程度,决定于复合镀层中氟化石墨的含量,可根据需要控制溶液中“HA-2”共沉积促进剂含量和pH值,来调节氟化石墨的含量,满足不同润滑要求。 金-氟化石墨自润滑复合镀层,在高低温使用环境条件下均具有优良的自润滑性能、电性能和可焊性能,并且不产生挥发物和污染物,是接插件、减磨器件比较理想的自润滑镀层。  相似文献   

8.
前言 近年来新研制的M158型碳-石墨材料是一种新型的优良的密封、轴承材料,特别是作为轴承材料,更有着自己特殊的应用。 M158型碳-石墨材料具有低的摩擦系数、高的化学稳定性和良好的导热性。因此,它特别适合于大负荷、强腐蚀等条件下使用。它具有良好的抗磨性能,在大多数情况下能成功地运行10000小时以上而无过度磨损,使用寿命长。另外,M158型碳-石墨  相似文献   

9.
在聚丙烯腈(PAN)聚合液中分别加入Fe,nano-Fe和FeC2O4.2H2O,经热处理后制备了三种新型的电磁损耗型碳基复合吸波材料.通过X射线衍射仪(XRD)对复合材料分别进行物相分析,三种复合材料中,Fe元素主要以Fe3O4的形式存在.根据所测得的介电常数和磁导率比较分析了三种碳基复合材料和纯碳材料的吸波性能,结果表明加入Fe和nano-Fe制备的碳基复合材料有效改善了纯碳材料的输入波阻抗匹配程度,提高了微波吸收性能.结果表明,加入Fe和nano-Fe制备的碳基复合材料,涂层厚度分别为1.9和2.2mm时,在12.7~ 18GHz频段内,反射损失值都小于- 10dB,有效吸收带宽为5.3GHz.涂层厚度均增至2.5mm,最小反射损失值分别达到- 46和- 29.8dB,有效改善了纯碳基体输入波阻抗匹配程度,提高了微波吸收性能.  相似文献   

10.
离子液体基超级电容器由于具有宽电压窗口、高能量密度而被广泛关注。二维碳基材料具有大比表面积、短离子传输距离被认为是最理想的超级电容器电极材料。阐述了3种二维碳基材料为电极,分别是多孔互通的功能化石墨烯、多孔碳纳米片、类石墨烯氮掺杂碳纳米片,分别匹配了不同的离子液体为电解液,所组装的超级电容器呈现出高能量-高功率与高循环稳定性协同输出。实现了超级电容器桥接商用二次电池和电解电容器之间的能量-功率带。  相似文献   

11.
碳-碳复合材料是本世纪六十年代中期发展起来的一种新型耐高温材料,它在发展航空和航天等尖端技术中具有重要意义。碳-碳复合材料的性能与其织构有密切关系。本文作者着重总结利用金相显微镜对三种不同工艺所得三维编织碳-碳复合材料  相似文献   

12.
采用微观和宏观包覆两种方式制备聚合物固态电解质包覆的硫@碳纤维复合固态电极,利用扫描电镜、元素分析和电化学测试表征电极的微观形貌,研究相应锂硫电池的电池性能。结果表明:微观的聚合物固态电解质包覆活性材料的电极结构有利于离子传输;电极表面宏观构建一层聚合物固态电解质薄膜有助于改善电极的循环稳定性,抑制穿梭效应;利用膜电极结构组装的全固态锂硫电池具有良好的循环性能,循环270次后库仑效率仍保持98%以上。  相似文献   

13.
碳/碳复台材料是一种新型的高温材料,在发展航空和航天等尖端技术方面它具有重要的意义。采用不同复合工艺制得的碳/碳复合材料的机械性能和烧蚀性能与复合工艺过程所形成的聚合物碳多相微观结构和缺陷特征有密切的关系。我们曾总结了用电子显微镜研究浸渍法所得3DCC复合材料的多相微观结构和缺陷特征。对化学气相沉积法(CVD)碳毡/碳复合材料的形态结构的研究,过去人们多数是采用光学显微镜或扫描电子显微镜(SEM),但对CVD碳毡/  相似文献   

14.
采用一步水热法合成Na_3V_(2-x)Al_x(PO_4)_2F_3(x=0、0.1、0.5、0.7)钠离子电池正极材料,并采用XRD、SEM、电池测试仪和电化学工作站对合成的材料进行表征、分析和测试。结果表明,Al离子掺杂降低Na_3V_2(PO_4)_2F_3正极材料的能隙,提高了其电子电导率。当x=0.5时,正极材料循环至35周时的可逆比容量最高,容量保持率最低。根据所得结果选择性能最优的Na_3V_(1.5)Al_(0.5)(PO_4)_2F_3正极材料进行了石墨烯包覆处理,并与未包覆的材料进行性能对比。石墨烯包覆前后样品循环至25周的可逆比容量分别为17.4 mAh·g~(-1)和47.7 mAh·g~(-1),容量保持率分别为59.6%和82.9%。石墨烯包覆后的Na_3V_(1.5)Al_(0.5)(PO_4)_2F_3,电荷转移电阻减小,晶体结构中钠离子传输速率提高,石墨烯包覆能有效提高Na_3V_(1.5)Al_(0.5)(PO_4)_2F_3正极材料的电化学性能。  相似文献   

15.
含CL-20的改性双基推进剂的机械感度   总被引:6,自引:2,他引:6       下载免费PDF全文
1引言为实现固体推进剂高能化,各国均在大力开展HEDM(高能量密度材料)的开发和应用研究[1~3]。在已合成的众多高能量密度材料中,CL-20(六硝基六氮杂异戊兹烷,又称HNIW)以较高的密度比冲、优异的燃烧性能等特征,备受青睐。因此,近些年各国对CL-20单体的合成、表征、热性能、安全  相似文献   

16.
通过几种新型含能材料及常规材料对固体推进剂能量性能和特征信号影响的对比、分析,预估了几种新型高能量密度材料的应用前景。  相似文献   

17.
碱性电瓶在飞机上起着极其重要的作用。本文从碱性电瓶原理和充电特性曲线入手,对飞机碱性电瓶的充电方法及充电终止控制方法进行了探讨。 飞机碱性电瓶是指镍-镉电瓶,在飞 机上起着极其重要的作用。在主电源失效后,电瓶对重要的飞机系统提供应急电源,保证飞机就近着陆,它还作为交流系统的控制和保护以及启动APU的备用电源,因此飞机电瓶是否正常工作,关系着飞行安全。 镍-镉电瓶具有效率高、寿命长、能量密度大、体积小、重量轻、结构紧凑、工作电压平稳、能大电流放电等特点。碱性电瓶原理 飞机碱性电瓶(镍-镉电瓶)的正极材…  相似文献   

18.
刘祺  杨磊  张益齐  付春雨  赵絮  黄玉平  郑再平 《推进技术》2020,41(12):2874-2880
通过开展脉冲等离子体推力器(Pulsed Plasma Thruster, PPT)放电试验,结合理论计算与分析,研究了放电室构型参数对推力器性能的作用机理与影响规律。结果表明:推进剂烧蚀表面附近电极间距的增大使放电电流的峰值降低;增大电极高宽比使电感梯度提高,并使电磁冲量得到提升。考虑到放电电流集中在推进剂表面附近,电流峰值主要受到放电室上游电极间距的影响,因此,采用在放电室下游增大电极扩张角的方法使电极高宽比增大,通过这种空间上的分离,能够解决增大电流峰值与提高电感梯度之间的矛盾,实现推力器电磁冲量的综合提升。相比于常规PPT所使用的矩形推进剂构型,V形的推进剂构型可有效提升推力器的气动冲量。  相似文献   

19.
针对超大功率霍尔推力器放电参数特性评估,开展放电电压和流量等参数变化对性能影响的仿真及试验研究,以确定推力器设计最优匹配的放电电压及放电电流工况。建立了Particle-in-Cell(PIC)数值仿真模型,并搭建了HET-450大功率霍尔推力器试验平台;针对变放电电压、变流量下推力器放电特性,仿真计算给出了放电通道内原子密度、电势以及电子温度等分布,探究了推力器电离和加速运行机理,进一步,结合试验,开展了放电电流、推力等比对分析。结果表明:放电电压从300V增加至500V过程中,电离效率逐渐提升,因而放电电流、推力以及阳极效率均递增,而继续增加放电电压则会导致过热场的产生,离子与壁面作用增强导致电离出的离子再次复合,工质利用率下降的同时壁面损失增加,宏观表现为阳极效率的下降。此外,仿真与试验所获得放电电流、推力等结果符合良好,说明建模合适;在500V,80mg/s条件下,推力达2.1N、阳极效率60%,达到设计要求,表明设计合理有效。  相似文献   

20.
节能电火花加工脉冲电源放电电流闭环控制的研究   总被引:1,自引:0,他引:1  
节能电火花加工脉冲电源采用开关稳流电路和PWM电流闭环控制技术,达到脉冲电源输出放电电流在放电加工各个阶段动态调节的性能要求,实现稳定高效地电火花放电加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号