首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
利用热量(TG)及微商热重(DTG),研究了GAP基含能热塑性弹性体(GAP-TPE)在氢气气氛、不同升温速率的热分解反应过程.根据GAP-TPE热解DTG曲线特点,把GAP-TPE热解过程分为3个阶段,用Kissinger法计算3个阶段的动力学参数,其活化能分别是223、235、57kJ/mol,lnA分别是52.7...  相似文献   

2.
通过DSC-TG热分析方法,对单组分聚氨酯和硼改性酚醛树脂两种多碳有机物对叠氮化钠气体发生剂的热分解动力学特性进行了研究。单组分聚氨酯降低了叠氮化钠热分解温度37℃,对叠氮化钠热分解温度影响较小;硼改性酚醛树脂降低了叠氮化钠热分解温度56℃,促进了叠氮化钠热分解。利用ASTM E698法和Ozawa法计算多组分混合物体系活化能,结果发现,单组分聚氨酯混合物体系表观活化能分别为385、397 kJ/mol;硼改性酚醛树脂混合物体系表观活化能分别为275、286 kJ/mol,两种方法计算结果较一致。与纯叠氮化钠热分解活化能值163 kJ/mol相比,硼改性酚醛树脂和单组分聚氨酯都提高了叠氮化钠热分解表观活化能,使叠氮化钠性能更稳定,达到热分解所需能量更高。  相似文献   

3.
利用3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)和1,4-丁二胺,在DMSO中合成出了标题化合物。采用元素分析和红外光谱分析,测定了其结构。用DSC和TG/DTG热分析仪,对标题化合物进行了热分解行为及热分解动力学研究。结果表明,化合物的热分解过程只有一个放热阶段,该阶段的非等温热分解反应动力学方程的活化能和指前因子分别为92.95 kJ/mol和1016.58s-1。采用MicroDSCⅢ量热仪中的连续比定压热容测定模式,测定了化合物的比定压热容,比定压热容随温度呈现二次方关系,且298.15 K下的标准摩尔热容为443.22 J/(mol.K)。计算得到化合物的自加速分解温度(TSADT)、热爆炸临界温度(Tb)和绝热至爆时间分别为521.55、536.73 K和36.97 s。  相似文献   

4.
利用差示扫描量热(DSC)法,得到端羟基聚醚(HTPE)/六硝基六氮杂异伍兹烷(CL-20)和HTPE/奥克托今(HMX)混合体系在不同升温速率(2.5、5.0、10.0、20.0℃/min)下的热分解曲线;用Kissinger公式和Ozawa公式,计算了HTPE/CL-20和HTPE/HMX体系热分解的表观活化能。结果表明,HTPE/CL-20混合体系表观活化能分别为132.11、130.60 k J/mol;HTPE/HMX混合体系表观活化能分别为193.80、198.57 k J/mol。对于同一体系,2种公式计算的结果基本一致。与单组分(CL-20或HMX)相比,HTPE/CL-20和HTPE/HMX体系的表观活化能分别降低了28.3~29.8 k J/mol和80.2~85.0 k J/mol。HTPE均降低了2种高能组分(CL-20和HMX)的分解放热峰温度,CL-20和HMX的分解放热峰峰温降低了36.0℃和17.3℃。HTPE/CL-20体系分解放热量减少了354.5 J/g,而HTPE/HMX体系分解放热量不变。  相似文献   

5.
利用热重-微分热重分析技术研究了自制的双酚芴乙二胺苯并噁嗪树脂在氮气气氛中的热分解动力学,通过Kissinger法和Ozawa法对该树脂进行动力学分析,求出相关动力学参数。利用模型拟合法推测双酚芴乙二胺苯并噁嗪树脂的热分解机理,并用非模型拟合法进行验证。结果表明,双酚芴乙二胺苯并噁嗪树脂的热分解平均活化能及指前因子分别为E=260.55 k J/mol;lg A=16.98 s-1。双酚芴乙二胺树脂热分解过程符合随机成核和随后生长机理,其分解反应微分函数为f(α)=n(1-α)×[-ln(1-α)]1-1n;积分函数为g(α)=[-ln(1-α)]1n,其中n=1/5,对应的热分解反应方程为dαd T=9.55×1016()βexp-260.55×103RT×15(1-α)×[-ln(1-α)]-4。  相似文献   

6.
利用热重-微分热重技术研究了二炔丙基双酚A醚聚合物(PDPEBA)在氮气气氛中的非等温热分解过程,探讨了聚合物在不同升温速率下的热分解机理,并采用2种模型法和5种非模型法对二炔丙基双酚A醚聚合物热分解动力学三因子(E、A、f(a))进行计算。结果表明,7种方法计算所得平均活化能及指前因子分别为E=176.30 k J/mol,lg A=10.43s-1;聚合物热分解阶段符合三维扩散机理,其对应的机理微分函数为f(α)=32(1-α)43×(1-α)-1[-3/1]-1,积分函数为g(α)=(1-α)-1[-3/1]2。  相似文献   

7.
为了评价含能材料3,4-双(3',5 '-二硝基苯-l'-基)氧化呋咱(BDPF)的热稳定性和安全性,采用DSC、PDSC和'G/DTG方法对其进行了热行为及非等温热分解动力学研究.通过Kissinger和Ozawa's法得到常压下热分解反应的动力学参数(Ea和A)为180.46 kJ·mol-1和1015.29 s-...  相似文献   

8.
采用DSC法研究了不同升温速率下E51环氧树脂与ABO芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的热性能。通过分析确定了树脂的基本固化工艺,采用Kissinger、Ozawa方法计算出树脂的表观活化能,其平均值为52.94 kJ/mol,结合Crane公式求出反应级数为1.1,固化反应动力学符合n级反应模型;测得玻璃化转变温度Tg=217℃,热失重曲线表明体系的起始分解温度为361℃。  相似文献   

9.
合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)Bi(Ⅲ)含能配合物,采用FTIR、元素分析和XPS光电子能谱表征了含能配合物的结构。根据结构表征结果推测,ANPyOBi(Ⅲ)含能配合物的分子式为Bi(C5H4N5O5)3,金属离子与配体的配比为1∶3。其中,可能的配位方式为:每个配体ANPyO 2-位的氨基脱去一个氢原子,分别以NH和N→O结构单元中N原子和O原子与Bi(Ⅲ)形成配位键。ANPyOBi(Ⅲ)含能配合物的撞击感度、摩擦感度和冲击波感分别为220cm、36 kg和5.8 mm。采用TG-DTG和DSC测试考察了ANPyOBi(Ⅲ)含能配合物的热分解行为,配合物在50~450℃范围内热分解过程由一个吸热熔融峰和分解放热峰组成,相应的峰温分别为320.6℃和346.5℃,配合物热分解剩余残渣量为31.2%。同时,考察了配合物对高氯酸铵热分解的催化作用,并采用Kissinger法对纯AP和AP混合物热分解过程低温分解阶段和高温分解阶段的表观活化能和指前因子进行了计算。结果表明,ANPyOBi(Ⅲ)含能配合物可使高氯酸铵高温分解阶段和低温分解阶段的峰温提前63.6℃和63.1℃,表观活化能降低23.1 kJ/mol和61.5 kJ/mol,表观分解热增加339.3 J/g。可发现,ANPyOBi(Ⅲ)含能配合物对AP的热分解具有显著的催化作用。  相似文献   

10.
合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO) Bi(III)含能配合物,采用FTIR、元素分析和XPS光电子能谱表征了含能配合物的结构.根据结构表征结果推测,ANPyO Bi(III)含能配合物的分子式为Bi(C5H4N5O5)3,金属离子与配体的配比为1∶3.其中,可能的配位方式为:每个配体ANPyO 2-位的氨基脱去一个氢原子,分别以NH和N→O结构单元中N原子和O原子与Bi(III)形成配位键.ANPyO Bi(III)含能配合物的撞击感度、摩擦感度和冲击波感分别为220 cm、36 kg和5.8 mm.采用TG-DTG和DSC测试考察了ANPyO Bi(III)含能配合物的热分解行为,配合物在50~450 ℃范围内热分解过程由一个吸热熔融峰和分解放热峰组成,相应的峰温分别为320.6 ℃和346.5 ℃,配合物热分解剩余残渣量为31.2%.同时,考察了配合物对高氯酸铵热分解的催化作用,并采用Kissinger法对纯AP和AP混合物热分解过程低温分解阶段和高温分解阶段的表观活化能和指前因子进行了计算.结果表明,ANPyO Bi(III)含能配合物可使高氯酸铵高温分解阶段和低温分解阶段的峰温提前63.6 ℃和63.1 ℃,表观活化能降低23.1 kJ/mol和61.5 kJ/mol,表观分解热增加339.3 J/g.可发现,ANPyO Bi(III)含能配合物对AP的热分解具有显著的催化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号