首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.  相似文献   

2.
The Cosmic Radiation Environment and Dosimetry experiment (CREDO) has been operational on board the Advanced Photovoltaics & Electronics Experiment Spacecraft since August 1994. Extensive measurements of cosmic ray linear energy transfer spectra (using data to January 1996) and total dose (using data to November 1994) have been made, and compared with predictions of standard models. Detailed consideration of spacecraft shielding effects have been made. Predictions are shown to overestimate the measured linear energy transfer spectra. The CREAM experiment was flown on STS-63 in the SpaceHab module. Results show penetration of high energy electrons into the SpaceHab module.  相似文献   

3.
The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment.  相似文献   

4.
A MicroElectronics Test Package (MEP) measured total dose degradation and single event upsets (SEUs) on 60 device types on the Combined Release and Radiation Effects Satellite (CRRES) in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. Simultaneous measurements of the high energy particle environment were used to make a direct cause and effect comparison of the energetic particle backgrounds and microelectronic performance characteristics. The galactic cosmic ray background for the period of the CRRES mission was at a minimum. The SEUs experienced from the cosmic ray background were correspondingly few in number, but surprisingly produced an equal probability of upset over an L-shell range of 8.5 Earth radii (RE) down to less than 3.0 RE. Cosmic ray induced upset frequencies in proton sensitive chips were over 2 orders of magnitude lower than those produced by protons in the heart of the inner proton radiation belts. Multiple upsets, those produced when a single particle upsets more than one memory location, were just as common from protons as from cosmic rays.  相似文献   

5.
Since STS-26, three large solar events have occurred during Shuttle missions; a geomagnetic storm during STS-29 and solar particle events (SPEs) during STS-28 and -34. The maximum dose to a crew attributed to an SPE was estimated to be 30 microGy (70 microSv). Time-resolved dosimetry measurements of the SPE dose during STS-28 were made using the Air Force Radiation Monitoring Equipment (RME)-III. Comparison of calculated and measured dose demonstrated a discrepancy, possibly a result of deficiencies in the geomagnetic cutoff model used. This experience demonstrates that dose from an SPE is strongly dependent on numerous factors such as orbit inclination, SPE start time, spectral parameters and geomagnetic field conditions; the exact combination of these factors is fortuitous. New sources of data and procedures are being investigated, including real-time tracking of auroral oval positions or determination of particle cutoff latitudes, for incorporation into operational Shuttle radiation support practices.  相似文献   

6.
We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km).  相似文献   

7.
Environment and disaster monitoring and forecasting small satellite constellation A and B satellites (HJ-1-A, B) are called "environment and disaster reduction satellites A and B' for short. The constellation adopts a 10:30 LT sun-synchronous circular orbit, with orbit altitude of 649 km. HJ-1-A and HJ-1-B are distributed with a phase difference of 180o in the same orbital plane, so as to enhance the time resolution of earth observation. The satellites have orbit maintenance capability, the lifetime is 3 years. Both satellites adopt CAST968 platforms. Two wide-coverage multispectral CCD cameras with resolution 30 m and width 700 km, a super-spectral imager with resolution 100 m and width 50 km as well as a data transmission subsystem of 120 Mbit/s are deployed on HJ-1-A, which also carries Ka communication testing equipment of Thailand. HJ-1-B has two wide-coverage multispectral CCD cameras (the same as satellite A), one infrared camera with resolution 150 m and width 720 km and a data transmission subsystem of 60 Mbit/s. The coverage period of the wide-coverage multispectral CCD camera is 48 hours. The revisit period of super-spectral imager is 96 hours and the coverage period of infrared camera is 96 hours.   相似文献   

8.
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas.  相似文献   

9.
Measurements of radiation exposures aboard manned space flights of various altitudes, orbital inclinations and durations were performed by means of passive radiation detectors, thermoluminescent detectors (TLD's), and in some cases by active electronic counters. The TLD's and electronic counters covered the lower portion of the LET (linear energy transfer) spectra, while the nuclear track detectors measured high-LET produced by HZE particles. In Spacelab (SL-1), TLD's recorded a range of 102 to 190-millirad, yielding an average low-LET dose rate of 11.2 mrad per day inside the module, about twice the dose rate measured on previous space shuttle flights. Because of a higher inclination of the SL-1 orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles were also observed, yielding an overall average mission dose-equivalent of about 135 millirem, about three times higher than measured an previous shuttle missions. A dose rate more than an order of magnitude higher than for any other space shuttle light was obtained for mission STS-41C, reflecting the highest orbital altitude to date of 519 km.  相似文献   

10.
Using the imaging instrumentation aboard the Dynamics Explorer spacecraft (DE-I), total column ozone densities are obtained in the sunlit hemisphere by measuring the intensities of backscattered solar ultraviolet radiation with multiple filters and multiple photometers. The high apogee altitude (23,000 km) of the eccentric polar orbit allows high resolution global-scale images of the terrestrial ozone field to be obtained within 12 minutes. Previous ozone-monitoring spacecraft have required much longer time periods for comparable spatial coverage because of their lower altitudes (<1200 km). The much higher altitude of DE-I also provides hours of continuous imaging of features compared to minutes or seconds with previous spacecraft. Near perigee, high resolution images can be gained with pixel size as small as 3 km to view mesoscale atmospheric variations. Utilizing these data, the effects of planetary-scale, synoptic-scale, and mesoscale dynamical processes, which control the distribution of ozone near the tropopause, can be studied. Preliminary results show short-term (less than one day) variations in the synoptic ozone field and these variations appear to be in accord with meteorological data. Spatial variations in the ozone field are found to be highly negatively correlated with tropopause altitude.  相似文献   

11.
A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center.  相似文献   

12.
Solar particle events as seen on CRRES.   总被引:1,自引:0,他引:1  
High energy proton detectors on the Combined Release and Radiation Effects Satellite (CRRES) were used to measure near-Earth solar protons in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. CRRES data from the major solar particle event on 23-25 March 1991 show conclusively that MeV solar protons can penetrate deep inside the magnetosphere (to an L-shell of 2.5 RE) when a large shock-induced Sudden Storm Commencement (SSC) occurs and significant solar particle populations are present at geosynchronous altitudes. The penetration of solar particles well inside boundaries predicted by Stormer theory occurred during every large solar event of the CRRES mission, as well as many of the smaller ones. Often the deep penetrations occurred simultaneously with the formation of new trapped radiation populations which peak at L-values between 2.3 and 4 RE (depending on particle energy) and which last from days to months.  相似文献   

13.
14.
An X2/2B level solar flare occurred on 12 August, 1989, during the last day of the flight of the Space Shuttle Columbia (STS-28). Detectors on the GOES 7 satellite observed increased X-ray fluxes at approximately 1400 GMT and a solar particle event (SPE) at approximately 1600 GMT. Measurements with the bismuth germanate (BGO) detector of the Shuttle Activation Monitor (SAM) experiment on STS-28 showed factors of two to three increases in count rates at high latitudes comparable to those seen during South Atlantic Anomaly (SAA) passages beginning at about 1100 GMT. That increased activity was observed at both north and south high latitudes in the 57 degrees, 300 kilometer orbit and continued until the detector was turned off at 1800 GMT. Measurements made earlier in the flight over the same geographic coordinates did not produce the same levels of activity. This increase in activity may not be entirely accounted for by observed geomagnetic phenomena which were not related to the solar flare.  相似文献   

15.
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models.  相似文献   

16.
开展了基于Gooding算法的400km天基平台光学目标监测的轨道确定研究,当测量误差为3”和6”时,分别对800,1500及36000km轨道高度目标进行初始轨道确定及轨道改进分析.仿真结果表明,利用400km轨道高度平台对800~1500km轨道高度目标进行初定轨,测量数据误差为3”~6”时,4~15min弧段的初定轨精度约在10km量级,1~2min弧段的初定轨精度约在100km量级;15min初定轨弧段轨道改进后误差在100m量级,弧段小于10min时轨道改进误差精度在km量级.利用400km轨道高度平台对36000km轨道高度目标进行初定轨,测量数据误差为3”时,15~20min弧段的初定轨精度约在数十km量级,8~10min弧段的初定轨精度在100km量级;轨道改进后误差在km量级.测量数据误差为6”时,20min弧段初定轨精度在10km量级,8~15min弧段初定轨精度在100km量级,轨道改进后误差精度在10km量级.   相似文献   

17.
Cosmic ray cut-off rigidity tables and maps over the world concerning the epochs 2010, 2015 and the current one 2020 have been constructed. These maps display the effective cut-off rigidity in every five degrees in latitude and in longitude at the altitude of 20 km above the surface of the international reference ellipsoid. The values of the geomagnetic cut-off rigidity were calculated in every 5° in latitude and in every 15° in longitude applying the well-known method of particle trajectory calculations resulted from the theory of the particle motion in the Earth's magnetic field. The applied software employed the 12th Generation of the International Geomagnetic Reference Field (IGRF 12) and trajectories were calculated at 0.01 GV intervals in order to determine the vertical cut-off rigidity for each location. Beyond the use of the calculated cut-off rigidity values as a basic reference of charged particle access to different geographical locations during quiet and/or more intense geomagnetic periods, these results can be used for a long- term forecasting of the geomagnetic conditions variations.  相似文献   

18.
The Shuttle Activation Monitor (SAM) experiment was flown on the Space Shuttle Columbia (STS-28) from 8-13 August, 1989 in a 57 degrees, 300 km orbit. One objective of the SAM experiment was to determine the relative effect of different amounts of shielding on the gamma-ray backgrounds measured with similarly configured sodium iodide (NaI) and bismuth germante (BGO) detectors. To achieve this objective twenty-four hours of data were taken with each detector in the middeck of the Shuttle on the ceiling of the airlock (a high-shielding location) as well as on the sleep station wall (a low-shielding location). For the cosmic-ray induced background the results indicate an increased overall count rate in the 0.2 to 10 MeV energy range at the more highly shielded location, while in regions of trapped radiation the low shielding configuration gives higher rates at the low energy end of the spectrum.  相似文献   

19.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   

20.
We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号