首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Benkhoff  J. 《Space Science Reviews》1999,90(1-2):141-148
Surface temperature and the available effective energy strongly influence the mass flux of H2O and minor volatiles from the nucleus. We perform computer simulations to model the gas flux from volatile, icy components in porous ice-dust surfaces, in order to better understand results from observations of comets. Our model assumes a porous body containing dust, one major ice component (H2O) and up to eight minor components of higher volatility (e.g. CO, CH4, CH3OH, HCN, C2H2, H2S), The body's porous structure is modeled as a bundle of tubes with a given tortuosity and an initially constant pore diameter. Heat is conducted by the matrix and carried by the vapors. The model includes radially inward and outward flowing vapor within the body, escape of outward flowing gas from the body, complete depletion of less volatile ices in outer layers, and recondensation of vapor in deeper, cooler layers. From the calculations we obtain temperature profiles and changes in relative chemical abundances, porosity and pore size distribution as a function of depth, and the gas flux into the interior and into the atmosphere for each of the volatiles at various positions of the body in its orbit. In this paper we relate the observed relative molecular abundances in the coma of Comet C/1995 O1 (Hale-Bopp) and of Comet 46P/Wirtanen to molecular fluxes at the surface calculated from our model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
八水氢氧化钡相变材料的强化传热实验   总被引:1,自引:0,他引:1  
盛强  邢玉明  王泽 《航空动力学报》2013,28(9):1927-1932
采用差示扫描量热法(DSC)对八水氢氧化钡相变材料进行热物性分析,总结出一种针对结晶水合盐相变温度与潜热准确可靠的测量方法.通过扫描电子显微镜(SEM)获得相变材料与金属容器截面腐蚀情况的图像,证明八水氢氧化钡与紫铜有优良的相容性.分别对含/未含泡沫铜的固液相变蓄热体进行实验研究,结果表明:泡沫铜填充使相变材料在固相区内熔化时间减少了26%,增强了相变材料的传热效果,而且将八水氢氧化钡过冷度降低了50%.   相似文献   

3.
In view of the low H2O abundance in the present Venusian and Martian atmospheres several observations by spacecraft and studies suggest that both planets should have lost most of their water over the early active period of the young Sun. During the first Gyr after the Sun arrived at the Zero- Age-Main-Sequence high X-ray and EUV fluxes between 10 and 100 times that of the present Sun were responsible for much higher temperatures in the thermosphere-exosphere environments on both planets. By applying a diffusive-gravitational equilibrium and thermal balance model for investigating radiation impact on the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by CO2 IR emission in the 15μm band we found expanded thermospheres with exobase levels between about 200 km (present) and 2000 km (4.5 Gyr ago). The higher temperatures in the upper atmospheres of both planets could reach “blow-off” conditions for H atoms even at high CO2 mixing ratios of 96%. Lower CO2/N2 mixing ratio or higher contents of H2O vapor in the early atmospheres could have had a dramatic impact from the loss of atmosphere and water on both planets. The duration of this phase of high thermal loss rates essentially depended on the mixing ratios of CO2, N2, and H2O in the early atmospheres and could have lasted between about 150 and several hundred Myr.  相似文献   

4.
Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.  相似文献   

5.
The Neutral Mass Spectrometer on the Giotto spacecraft established that H2O is the dominant species in Comet Halley's volatiles and determined the abundance of more than 10 parent species. The instrument discovered strong extended H2CO and CO sources in the coma of Comet Halley. Polymerized H2CO associated with the cometary dust and evaporating slowly as the monomer is most likely the extended H2CO source. Photodissociation of the H2CO into CO fully accounts for the extended CO source. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
乙醇燃烧加热空气污染物对煤油超燃的影响   总被引:1,自引:0,他引:1  
在燃烧室入口来流马赫数为2.5的条件下,研究乙醇燃烧加热空气污染物对煤油超声速燃烧的影响.在加热器中,采用预混稳态燃烧火焰模型和61组分388步详细反应机理模拟乙醇燃烧加热过程,获得与实验温度条件相同的详细污染出口组分组成.其主要污染空气作为煤油超声速燃烧室的入口组分,采用17组分30步反应机理模拟煤油超声速燃烧过程,研究了污染物组分对煤油超燃室性能的影响.通过化学动力学和热力学分析,对比了地面电加热、乙醇燃烧加热和25km高空三种工况.结果表明:由于自由基作用以及平 均分子质量的减小和平均比定压热容的增加,乙醇燃烧加热污染空气造成超燃室的燃烧效率和内推力均上升.   相似文献   

8.
Geiss  J.  Altwegg  K.  Balsiger  H.  Graf  S. 《Space Science Reviews》1999,90(1-2):253-268
We have searched for rare molecules and radicals in the coma of P/Halley using the ion data obtained by IMS-Giotto. Whereas our established methods were used in the ionosphere, a new model was developed for the interpretation of the ion data in the outer coma. Ne/H2O < 1.5 × 10-3 was determined in the coma of the comet. Upper limits for the production of Na were derived from the very low abundance of Na+. Methyl cyanide and (probably) ethyl cyanide were identified with abundances of CH3CN/H2O = (1.4 ± .6) × 10-3 and C2H5CN/H2O = (2.8 ± 1.6) × 10-4. These results and upper limits for other N-bearing species confirm that nitrogen is depleted in the Halley material. C4H was identified and a point source strength of C4H/H2O = (2.3 ± .8) × 10-3 was derived. Our upper limit for C3H is lower than the abundance of C4H. This is in agreement with the enhanced abundances of CnH species with even numbers of C-atoms found in interstellar molecular clouds, suggesting that the C4H in Halley was synthesized under molecular cloud conditions. Thus, C4H and other organics with unpaired electrons may turn out to be indicators for a molecular cloud origin of cometary constituents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The transport and exchange of material between bodies in the outer solar system is often facilitated by their exposure to ionizing radiation. With this in mind we review the effects of energetic ions, electrons and UV photons on materials present in the outer solar system. We consider radiolysis, photolysis, and sputtering of low temperature solids. Radiolysis and photolysis are the chemistry that follows the bond breaking and ionization produced by incident radiation, producing, e.g., O2 and H2 from irradiated H2O ice. Sputtering is the ejection of molecules by incident radiation. Both processes are particularly effective on ices in the outer solar system. Materials reviewed include H2O ice, sulfur-containing compounds (such as SO2 and S8), carbon-containing compounds (such as CH4), nitrogen-containing compounds (such as NH3 and N2), and mixtures of those compounds. We also review the effects of ionizing radiation on a mixture of N2 and CH4 gases, as appropriate to Titan’s upper atmosphere, where radiolysis and photolysis produce complex organic compounds (tholins).  相似文献   

10.
Sources of organic matter and inorganic tracers on Jupiter, including solar UV photolysis, lightning discharges, and convective quenching of hot gases from the lower atmosphere, are reviewed in light of Earth-based and Voyager data with the purpose of predicting the tropospheric steady-state abundances and vertical distributions of HCN, CH2O, and other species.It is concluded that a steady-state mole fraction of HCN in the Jovian troposphere of only 10-12 could be maintained by vertical transport of hot gases from the deep atmosphere. The observed HCN abundance (roughly XHCN = 10-9) appears to be due to photochemical reactions.After HCN, the most abundant organic disequilibrium species in the troposphere is probably C2H6, derived from direct photolysis of CH4 at high altitudes, with a mole fracton of 10-10 at the H2O cloud level. Inorganic tracers of disequilibrium processes are also briefly summarized.  相似文献   

11.
采用TG-FTIR和Py GC-MS联用仪对PICA中酚醛热分解过程和产物进行分析和研究,结果表明,PICA酚醛存在两个明显热失重阶段。第一阶段失重为酚醛小分子解吸附过程,主要为H2O、CO2和HOCH2CH2OH分子;第二阶段主要是由酚醛化学键断裂反应引起,为主要热分解阶段,产物主要为酚类、苯系物和稠环芳烃。经过高温热解后,酚醛基体与高孔隙率碳纤维增强体结合形成疏松多孔且具有一定强度的碳层结构。  相似文献   

12.
The intense stellar UV radiation field incident upon extra-solar giant planets causes profound changes to their upper atmospheres. Upper atmospheric temperatures can be tens of thousands of kelvins, causing thermal dissociation of H2 to H. The stellar ionizing flux converts H to H+. The high temperatures also drive large escape rates of H, but for all but the planets with the smallest orbits, this flux is not large enough to affect planet evolution. The escape rate is large enough to drag off heavier atoms such as C and O. For very small orbits, when the hill sphere is inside the atmosphere, escape is unfettered and can affect planet evolution.  相似文献   

13.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   

14.
Most of our knowledge regarding planetary atmospheric composition and structure has been achieved by remote sensing spectroscopy. Planetary spectra strongly differ from one planet to another. CO2 signatures dominate on Mars, and even more on Venus (where the thermal component is detectable down to 1 μm on the dark side). Spectroscopic monitoring of Venus, Earth and Mars allows us to map temperature fields, wind fields, clouds, aerosols, surface mineralogy (in the case of the Earth and Mars), and to study the planets’ seasonal cycles. Spectra of giant planets are dominated by H2, CH4 and other hydrocarbons, NH3, PH3 and traces of other minor compounds like CO, H2O and CO2. Measurements of the atmospheric composition of giant planets have been used to constrain their formation scenario.  相似文献   

15.
Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   

17.
活性粒子对H_2/Air混合物燃烧的影响   总被引:1,自引:1,他引:0  
建立H2/Air混合物燃烧的化学动力学模型,计算与分析了在非平衡等离子体条件下,气体放电产生的活性粒子(O,H)和活性基(OH)在不同当量比下对参与燃烧的组分以及温度和压力的影响,为航空发动机燃烧室等离子体助燃(PAC)实验研究和实际应用提供理论依据.计算结果表明等离子体助燃可以提高反应效率、燃烧温度和火焰传播速率,减少燃烧上升时间,强烈影响H2/Air混合物燃烧.  相似文献   

18.
Huebner  W.F.  Benkhoff  J. 《Space Science Reviews》1999,90(1-2):117-130
A major goal of comet research is to determine conditions in the outer solar nebula based on the chemical composition and structure of comet nuclei. The old view was to use coma abundances directly for the chemical composition of the nucleus. However, since the composition of the coma changes with heliocentric distance, r, the new view is that the nucleus composition msut be determined from analysis of coma mixing ratios as a function of r. Taking advantage of new observing technology and the early detection of the very active Comet Hale-Bopp (C/1995 O1) allows us to determine the coma mixing ratios over a large range of heliocentric distances. In our analysis we assume three sources for the coma gas: (1) the surface of the nucleus (releasing water vapor), (2) the interior of the porous nucleus (releasing many species more volatile than water), and (3) the distributed source (releasing gases from ices and hydrocarbon polycondensates trapped and contained in coma dust). Molecules diffusing inside the nucleus are sublimated by heat transported into the interior. The mixing ratios in the coma are modeled assuming various chemical compositions and structural parameters of the spinning nucleus as it moves in its orbit from large heliocentric distance through perihelion. We have combined several sets of observational data of Comet Hale-Bopp for H2O (from OH) and CO, covering the spectrum range from radio to UV. Many inconsistencies in the data were uncovered and reported to the observers for a reanalysis. Since post-perihelion data are still sparse, we have combined pre- and post-perihelion data. The resulting mixing ratio of CO relative to H2O as a function of r is presented with a preliminary analysis that still needs to be expanded further. Our fit to the data indicates that the total CO release rate (from the nucleus and distributed sources) relative to that of H2O is 30% near perihelion. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
This report estimates the amounts of various constituents that would have to be continually injected by rockets into the upper atmosphere in order to double the worldwide natural concentrations there. Involved in the calculations are: (a) the natural atmospheric abundances of constituents such as H2O, CO2, NO, Na, K, Li, H, etc.; (b) the residence times in various regions of the atmosphere, since these determine how rapidly a constituent will be removed; and (c) the chemical or photochemical stability of a substance exposed to the upper atmosphere environment. It is concluded that a doubling of the CO2, H2O, or NO content would require per year on the order of 103 to 105 Saturn-type rockets, each injecting 100 tons of exhaust above 100 km. On the other hand, a few hundred small rockets per year, each containing 10 kg of the chemical, would probably double the Na content; similarly, less than two such rockets per year would be expected to double the Li content. These last conclusions have implications for future tracer experiments using these substances.The author is now an Associate Director of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The work reported here was supported by the United States Air Force under Contract AF 49(638)-700 with the RAND Corporation. The views or conclusions contained in this paper should not, however, be interpreted as representing the official opinion of the United States Air Force.  相似文献   

20.
Carbon isotope ratios have been measured for CN in the coma of comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of 13C/12C values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus. The next decade should substantially improve our understanding of the distribution of C, H, N, and O isotopes in cometary organics. The isotopic composition of meteoritic organic matter is better understood and can serve as a useful analog for the cometary case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号