首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

2.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

3.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   

4.
We have found compact, near-nuclear X-ray sources in 21 (54%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 – 2.4 keV) of these compact X-ray sources are ∼1037 – 1040 erg s−1. The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ∼390 pc. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Γ ≈ 2.5) spectral slope. A multicolor disk blackbody plus power-law model fits the data from the spiral galaxies well, suggesting that the X-ray objects in these galaxies may be similar to a black hole candidate (BHC) in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ≈ 0.7 keV) gas dominates the emission. The fact that the spectral slope of the spiral galaxy sources is steeper than in normal type 1 active galactic nuclei (AGNs) and that relatively low absorbing columns (NH ≈ 1021 cm−2) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral galaxies may be BHCs, low-luminosity AGNs, or possibly X-ray luminous supernovae. We estimate the black hole masses of the X-ray sources in the spiral galaxies (if they are BHCs or AGNs) to be ∼102–103 M. The X-ray sources in the elliptical galaxies may be BHCs, AGNs or young X-ray supernova also.  相似文献   

5.
The Crab was observed in a balloon flight from Palestine/Texas on 9/28/81 at hard X-ray energies (20–200 keV). The light curve is significantly sharper than reported previously for this energy range. The pulse-averaged as well as the interpulse spectra show breaks in our energy-range. The variation of spectral index across the pulse has an amplitude similar to that found at lower energies by OSO-8 and larger than reported by HEAO-1 A4 at hard X-rays. For a sharp emission line at 77 keV a 99% upper limit of 1.0*10−3 photons/ cm2 sec can be placed, a factor of 4 lower than line fluxes reported previously. Pulse-shape fits to the optical, X-ray, hard X-ray and gamma ray light-curves reveal a consistent picture of the origin of the interpulse and off-pulse emission, the breaks in the spectra and the variation of spectral index, providing arguments against a thermal component and also a polar cap emission model for NP0532.  相似文献   

6.
We present the preliminary results of a Chandra X-ray study of N132D, a young shell-like supernova remnant (SNR) in the Large Magellanic Cloud. The equivalent width maps of emissions from O, Ne, Mg, Si, and S are provided. Spatially resolved spectral analysis for the small-scale regions were tentatively performed. X-ray spectra of the interior can be described with a single-thermal model. The faint interior regions have lower density, higher temperature above 1 keV than that of bright interior regions. The X-ray spectra along the shell can be phenomenally fitted with either a double-vpshock model or a vpshock + powerlaw model. If the non-thermal component is true, N132D would be listed as another X-ray synchrotron SNR.  相似文献   

7.
8.
We present a forward modelling technique for calculating the surface X-ray spectra for a variety of lunar terrains. Our calculations considered variations in solar fluxes from solar quiescent condition to large flare activity (M1 flare), and expected elemental concentrations in the target, as well as yield, instrumental, and viewing geometry parameters for X-ray induced fluorescence from the lunar surface. Additionally, we present estimates of anticipated XRF signals from prominent Kα lines observable by a collimated 14 cm2 X-ray detector from a 100 km lunar orbit with ∼20 km spatial resolution. Our results show that Mg, Al and Si characteristic Kα lines can be observed for all solar conditions. The Ca Kα lines line can be differentiated from a fixed background during more energetic solar conditions such as C1 and M1 flares, whereas Ti and Fe lines are identifiable only during C1 and M1 solar flare conditions for Apollo 12 site composition. Both the Kα X-ray intensity ratios of Mg/Si and Al/Si correlate well with concentration ratios of Mg/Si and Al/Si, respectively, for B1 and M1 solar conditions. The Kα X-ray intensity ratios of Fe/Si and Ca/Si correlates with concentration ratios of Fe/Si and Ca/Si, respectively, for M1 solar condition. In principle, the modelling technique outlined here can be used to determine absolute elemental abundances (Mg, Al, Si, Ca, Ti and Fe) from X-ray spectra measured during recent and future lunar missions.  相似文献   

9.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

10.
The hard X-ray spectra of small subset of accreting pulsars show absorption-like line features in the range 10–100 keV. These lines, referred to as cyclotron lines or cyclotron resonance scattering features, are due to photons scattered out of the line of sight by electrons trapped in the 1012 G pulsar polar cap magnetic field. In this paper we present a review of observations, from the discovery of a cyclotron line in Hercules X-1 to recent results with RXTE and INTEGRAL.  相似文献   

11.
Asymmetric, broad iron lines are a common feature in the X-ray spectra of both X-ray binaries (XRBs) and type-1 Active Galactic Nuclei (AGN). It was suggested that the distortion of the Fe Kα emission results from Doppler and relativistic effects affecting the radiative transfer close to the strong gravitational well of the central compact object: a stellar mass black hole (BH) or neutron star (NS) in the case of XRBs, or a super massive black hole (SMBH) in the case of AGN. However, alternative approaches based on reprocessing and transmission of radiation through surrounding media also attempt to explain the line broadening. So far, spectroscopic and timing analyzes have not yet convinced the whole community to discriminate between the two scenarios. Here we study to which extent X-ray polarimetric measurements of black hole X-ray binaries (BHXRBs) and type-1 AGN could help to identify the possible origin of the line distortion. To do so, we report on recent simulations obtained for the two BH flavors and show that the proposed scenarios are found to behave differently in polarization degree and polarization angle. A relativistic origin for the distortion is found to be more probable in the context of BHXRBs, supporting the idea that the same mechanism should lead the way also for AGN. We show that the discriminating polarization signal could have been detectable by several X-ray polarimetry missions proposed in the past.  相似文献   

12.
A large (1455 cm2) hard X-ray telescope was successfully launched aboard a stratospheric balloon on October 4, 1980. During this flight four galactic X-ray sources were observed, namely the transient recurrent X-ray pulsar A0535+26, the Crab Nebula, Cygnus X-1 and X Persei. Here we report the results on the latter two sources. From Cygnus X-1 we measured a photon flux in the band 30 to 200 keV, of 3.5 × 10?2 photons cm?2 which is 6.5 times lower than that recieved from the source in a “low” intensity state in the same energy band. In addition, the photon spectrum in the same energy band was very soft and consistent with a power law with photon index α = 2.71 ± 0.14. Even if a simultaneous observation of the source at lower energies was not available, our data strongly suggest that we observed the source during a “high” intensity state. We report also positive detection in the band 30 to 200 keV of the low luminosity X-ray pulsar X Persei. In its spectrum we confirm the presence of a hard X-ray tail consistent with a power law (photon index α = 2.17 ± 0.42).  相似文献   

13.
We present observations of a C9.4 flare on 2002 June 2 in EUV (TRACE) and X-rays (RHESSI). The multiwavelength data reveal: (1) the involvement of a quadrupole magnetic configuration; (2) loop expansion and ribbon motion in the pre-impulsive phase; (3) gradual formation of a new compact loop with a long cusp at the top during the impulsive phase of the flare; (4) appearance of a large, twisted loop above the cusp expanding outward immediately after the hard X-ray peak; and (5) X-ray emission observed only from the new compact loop and the cusp. In particular, the gradual formation of an EUV cusp feature is very clear. The observations also reveal the timing of the cusp formation and particle acceleration: most of the impulsive hard X-rays (>25 keV) were emitted before the cusp was seen. This suggests that fast reconnection occurred during the restructuring of the magnetic configuration, resulting in more efficient particle acceleration, while the reconnection slowed after the cusp was completely formed and the magnetic geometry was stabilized. This observation is consistent with the observations obtained with Yohkoh/Soft X-ray Telescope (SXT) that soft X-ray cusp structures only appear after the major impulsive energy release in solar flares. These observations have important implications for the modeling of magnetic reconnection and particle acceleration.  相似文献   

14.
This paper presents an update of what we have learned in the last year about the ULX phenomenon. New results are presented on radio emission from Holmberg II and a review is given on the recent X-ray data on timing and spectra. The new X-ray spectroscopic and optical imaging survey of nearby ULX with XMM allows us, for the first time, to place the average properties of these objects on a statistical basis. Direct examination of the sites of ULXs in nearby galaxies shows that 1/3 of them are not in or near star forming regions, indicating that a substantial fraction of ULX are not directly associated with young star formation. There are two ULX which have been identified with B stars as the optical counterparts on the basis of optical spectroscopy. Radio imaging of the Holmberg II ULX shows that it lies in a luminous extended radio source and that the radio emission is not beamed. A statistical study of ULX spectra in nearby galaxies shows that the ratio of ‘high state’ to ‘low state’ ULXs is 1:1 and that the high state objects, in general, are best fit with low temperature black bodies with a steep power law index. The objects with high state spectra are systematically more luminous than the objects with low state spectra consistent with the hypothesis that both are drawn from a population which shows state changes similar to those of black holes in the Milky Way. If this is true then the masses implied for the objects with the low state spectra are greater than 50M.  相似文献   

15.
We present the analysis of archival Chandra high resolution X-ray spectra of AM Her. Emission lines from several hydrogen-like ions, helium-like ions, Fe-L shell transitions and Fe-K fluorescent are identified. Using the resonance, intercombination and forbidden lines of the few prominent helium-like ions, we infer a density greater than 2 × 1012 cm−3 and a temperature of 2 MK for the oxygen and neon line emitting regions in the accretion column of AM Her.  相似文献   

16.
We show that the observations of a limb flare, in which a hard X-ray (16–30 keV) source is seen at the boundary between two interacting magnetic structures, indicate the presence of hot (T ? 6 × 107 K) plasma within the region. Non thermal bremsstrahlung processes do not agree with these observations. We discuss the possible causes of the heating.  相似文献   

17.
The Pinhole/Occulter Facility concept uses a remote occulting mask to provide high resolution observations of the solar corona and of astronomical X-ray sources. With coded-aperture and Fourier-transform techniques, the Pinhole/Occulter makes images at a resolution of 0.2 arc sec for 2 - 120 keV X-rays, using a 50-m boom erected from the payload bay of the Space Shuttle or mounted on a free-flying platform. The remote occulter also creates a large shadow area for solar coronal observations; the Pinhole/Occulter concept includes separate optical and ultraviolet telescopes with 50-cm apertures. These large telescopes will provide a new order of resolution and sensitivity for diagnostic observations of faint structures in the solar corona. The Pinhole/Occulter is a powerful and versatile tool for general-purpose X-ray astronomy, with excellent performance in a broad spectral band complementary to that accessible with AXAF. The large collecting area of 1.5 m2 results in a 5σ detection threshold of about 0.02 μJy for the 2 - 10 keV band, or about 10?5 ph(cm2sec keV)?1 at 20 keV.  相似文献   

18.
We have measured the X-ray flux of the bright galactic bulge source GX17+2 in the energy range 1–20 keV using the EXOSAT ME experiment. During 8 hours of continuous observation an X-ray flare was observed (lasting ~1 hr) followed by an intensity increase. The data show intensity dips with a quasiperiod of ~1.4 hours and quasi-periodic oscillations on time scale of 200–500 sec, which are possibly connected with oscillations of an accretion disc. The spectrum can be fitted by two blackbody spectra with kT1~1keV, and kT2~2keV, respectively, and an iron line at 6.3 ± 0.3 keV having 130 eV equivalent width. While the low energy component is rather stable, the 2keV-component shows considerable intensity variations. We suggest that the latter component represents emission from the inner part of the accretion disc while the soft spectrum is blackbody emission from the surface of the neutron star.  相似文献   

19.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   

20.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号