首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S形进气道流动控制数值模拟研究   总被引:2,自引:0,他引:2  
采用CFD技术,结合试飞数据,对某S形进气道进行了加涡流发生器的流动控制数值模拟研究.着重分析了三个不同位置加涡流发生器后,进气道内部二次流的发展;之后比较了不加涡流发生器及不同位置加涡流发生器时进气道出口总压恢复、畸变等情况.结果表明涡流发生器明显地影响着进气道内部二次流的发展变化,涡流发生器对进气道出口周向稳态总压畸变有较大程度改善,但是对于提高总压恢复效果不明显.  相似文献   

2.
横向二次流是制约叶轮机气动负荷进一步提升的主要因素。在叶片通道内施加涡流发生器有抑制通道横向二次流的潜力,但涡流发生器的最优施加方案很难确定。基于涡流发生器经验统计模型(BAYC模型)和响应面方法建立了一种端壁涡流发生器的高效设计方法。基于这一方法,实施于NACA 65直列叶栅,得到了三种涡流发生器优化方案,并在设计工况下和非设计工况下讨论了涡流发生器对端壁横向二次流的控制机理,发现具有更大的涡流发生器高度和更多的涡流发生器数量的方案在面对大攻角下的强横向二次流情况时能够有更强的余力对横向二次流加以控制,大大扩展了叶栅的攻角适用范围。   相似文献   

3.
超声速来流与燃料的充分掺混是超声速燃烧的关键技术,直接关系到吸气式高超声速推进系统的总体性能。本文通过在射流口前安装翼片式涡流发生器以促进燃料与空气的掺混。基于SST k-ω湍流模型的RANS方法,对带有翼片式涡流发生器的超燃冲压发动机燃烧室模型内氢气横向喷流冷流流场进行了数值模拟,对比分析涡流发生器高度和长度不同的条件下燃烧室内的流场结构、涡流强度、氢气与空气掺混特性、燃烧室总压损失的规律。结果表明,翼片式涡流发生器能够提高涡流强度并大幅提高燃烧室内的掺混性能。随着涡流发生器高度和长度的增加,流场结构间的干扰增强,导致涡流强度和穿透深度增加,从而提升掺混效率。与不安装涡流发生器情况相比,涡流发生器能提升氢燃料的穿透深度超过170%,减少燃料掺混距离70%以上。更加复杂的流场结构同时会增大燃烧室的总压损失,并随着涡流发生器高度和长度的增加而增大。相较于掺混性能的提升,总压损失的增大幅度相对小很多,说明通过合理的参数选择,翼片式涡流发生器能够有效提升燃烧室的掺混性能。  相似文献   

4.
陈晓  姜萍 《航空动力学报》1992,7(3):226-228,290
本文介绍了在一个大宽高比大扩压角二元亚音扩压器中采用适当几何参数的凹型面埋入式涡流发生器有效地控制扩压壁和角落区域分离流的试验结果。并分析了该型式涡流发生器主要几何参数对扩压器性能的影响。还对该型式涡流发生器与常规翼型式涡流发生器进行了比较。   相似文献   

5.
涡流发生器研制及其对边界层的影响研究   总被引:11,自引:0,他引:11  
本文主要介绍了涡流发生器的机理和用途,涡流发生器研制和使用的一些重要参数,并进行了分析和验证。通过风洞试验段侧壁边界层和马赫数分布测量及半模型试验,证明该涡流发生器的研制是成功的。在风洞试验段侧壁安装涡流发生器情况下,在马赫数0.4至0.9范围,使涡流发生器下游880mm处侧壁上的边界层约减薄了71%,而且对流场均匀度没有影响,并使半模试验有所改善。  相似文献   

6.
汪亮  尚东然  朱榕  季路成 《推进技术》2019,40(6):1285-1292
为研究被动式涡流发生器抑制压气机叶栅横向二次流以控制角区分离的作用,设计了在叶栅内部端壁处加装涡流发生器的控制方案,采用数值模拟的方法,详细分析了叶栅流场特性。结果表明:涡流发生器可以有效地抑制叶栅内部横向二次流,改善角区流动,在最佳控制方案中,总压损失系数下降8.1%;放置于叶栅内部的涡流发生器能阻挡气流的横向流动,其尾部产生的流向涡与横向迁移的端壁附面层相互作用,抑制了通道涡向吸力面的发展,并将主流高能流体卷入角区,增加角区流体动量;涡流发生器的长度和高度都会影响流向涡的强度,流向涡的涡核高度与涡流发生器高度一致,最终的控制效果由涡流发生器的长度和高度共同决定,只有当它们被合理选择,控制方案才能获得最佳控制效果。  相似文献   

7.
介绍了涡流发生器的工作原理、研究现状及未来发展趋势,特别针对微型涡流发生器在增升装置设计中的应用进行了综合评述,为涡流发生器应用于型号增升装置的设计提供理论依据和坚实的技术储备。  相似文献   

8.
为了研究涡流发生器周向相对位置和高度对高负荷风扇性能的影响,根据风扇的流动特点,设计了在第二级静子叶根入口前加涡流发生器的流动控制方案,并以此为基础提出了多种不同周向位置和高度的涡流发生器方案,通过计算对采取各种方案下的流场进行了分析。研究表明,涡流发生器对风扇第二级静子角区气流分离有较好的控制作用;涡流发生器的周向位置对第二级静子角区气流分离和损失的影响较大,采取方案C时可以更好地抑制角区气流分离,减少局部损失;涡流发生器高度过高会使静子压力面出现不同程度的低速区,同时也会引起静子通道内局部损失增加,在所研究的范围内,当涡流发生器高度降低1%叶高时,其对吸力面角区分离的控制效果更加明显。  相似文献   

9.
涡流发生器数值计算方法研究   总被引:9,自引:0,他引:9  
利用RANS方程和SA湍流模型解算器,采用多重网格法和预处理技术,对叶片式涡流发生器进行了数值模拟研究,初步探讨了涡流发生器的安装方式、剖面形状、几何尺度等因素在机翼分离流动控制中的影响规律和设计原则,并初步研究了安装涡流发生器对超临界机翼气动性能的影响。  相似文献   

10.
增升装置微型涡流发生器数值模拟方法研究   总被引:3,自引:1,他引:3  
 针对数值模拟带微型涡流发生器(VG)的增升装置绕流过程中出现的典型问题,研究相应解决途径.引入面搭接网格技术,避免传统结构网格方法造成的网格数量过大问题;在微型涡流发生器网格上采用特殊边界条件处理以分别对应有/无涡流发生器的状态,排除网格变动对计算结果造成的干扰;研发出了面搭接网格生成技术与特殊边界处理方法结合的求解加装微型涡流发生器的增升装置流动数值模拟方法.研究结果表明:该方法在处理增升装置这类复杂外形、复杂流动问题以及加装涡流发生器的流动控制问题时,具有良好的数值计算精度,能够满足研究需要,为开展涡流发生器精细设计和参数优化的数值模拟研究提供了可靠的技术途径.  相似文献   

11.
涡流发生器对高负荷扩压叶栅性能影响的机理分析   总被引:3,自引:5,他引:3       下载免费PDF全文
为探明涡流发生器流动控制技术对高负荷扩压叶栅性能影响及作用机理,根据高负荷扩压叶栅的流动特点,提出了在叶栅入口端壁处加涡流发生器的流动控制方案,通过计算研究了采用涡流发生器前后叶栅气动性能、附面层及主要旋涡结构的变化。研究结果表明:采用涡流发生器后,叶栅正攻角下的气动性能显著提升,总压损失减小,静压升增大,稳定工作最大正攻角从3°增加至5°,其中在3°攻角下总压损失系数下降0.028,静压系数提升0.033;涡流发生器生成的尾涡阻挡端壁附面层由压力面向吸力面的横向迁移,使吸力面/端壁区域聚集的低能流体减少,改善了角区流动;采用涡流发生器后,通道涡、集中脱落涡和壁角涡减弱,角区分离得到抑制。  相似文献   

12.
激波/边界层干扰(Shock Wave/Boundary Layer Interaction, SWBLI)是高超声速进气道中常见的流动现象,当其诱导边界层发生显著分离时往往会导致进气道气动性能严重下降。为此,本文提出了一种基于新型振荡式涡流发生器阵列的SWBLI控制方法,采用基于动网格技术的非定常仿真方法对该涡流发生器阵列流场进行了研究,验证了该控制方法的有效性,并研究了相关参数的影响规律。研究结果表明,振荡式涡流发生器可在超声速边界层内诱导产生振荡强度可变的涡系结构,增强了边界层流动与高速主流的掺混,同时该涡流发生器振荡过程中独特的“挤压”“抽吸”效应持续对气流进行充能,边界层内速度分布饱满程度显著增加。在控制效果方面,随着涡流发生器振荡频率增加,其对边界层低速气流充能的效果增强,对SWBLI流场的控制效果更加明显,形状因子最高可以降低28%;当激波入射在涡流发生器下游34hv时(其中hv为振荡式涡流发生器最大高度),控制效果最佳,激波诱导边界层分离区长度相比无控制时可减少25%;在涡流发生器下游x=270 mm处截取高度30 mm(z=30 mm)设置为监控面,相比于定几何涡流发...  相似文献   

13.
不同构型的微型涡流发生器对提高进气道/隔离段性能所产生的效果不同.采用数值模拟方法研究来流马赫数为2.0条件下,五种叶片式微型涡流发生器对流场边界层的流动控制特性.结果表明:带有一定前缘高度的叶片式微型涡流发生器可产生更强的流向涡,总压畸变和马赫数畸变较小,流场出流质量更佳,但同时带来较大的总压损失;微型涡流发生器的前缘厚度对流场性能提升无明显帮助,反而会增大总压损失;无前缘高度的微型涡流发生器能在引入较小总压损失的情况下,使隔离段拥有较强的抗反压能力,同时有效增大壁面摩擦系数,提高边界层对抗分离的能力.  相似文献   

14.
张悦  高婉宁  程代姝 《推进技术》2018,39(12):2755-2763
为了对超声速进气道口部唇罩激波/边界层干扰进行有效的控制,提出了一种基于记忆合金的可变形大长高比涡流发生器,并通过风洞实验验证了该方案的可行性和控制效果。结果表明:在记忆合金的驱动下,大长高比的涡流发生器可以实现自主变形,并且其变形量与设计值吻合较好,在没有外界气流干扰条件下涡流发生器尾缘变形高度与设计值的相对误差为3%,在风洞吹风条件下,变形完成的涡流发生器尾缘高度与设计值的误差为5.4%。在大长高比的可变形涡流发生器控制下,进气道入口因唇罩激波/边界层干扰导致的边界层分离包被有效控制,其被分割破碎为多个沿展向分布的小尺度分离包。同时,涡流发生器尾部诱导的旋涡增强了分离包内的低能流与主流的掺混,促使分离气流迅速再附。当进气道在马赫3.8工作时,进气道出口的总压恢复系数从无控制时的0.557提升至0.603。  相似文献   

15.
采用数值涡流发生器代替真实涡流发生器叶片进行双S型进气道流动控制数值模拟,结合实验设计理论分析了27组涡流发生器应用于进气道流动控制计算结果,从中找出控制装置参数变化对进气道总压恢复、流场畸变的不同影响,应用响应面法给出最佳参数组合,为双S型进气道被动流动控制装置参数优化提供技术参考.  相似文献   

16.
平尾的气动特性直接影响飞机的飞行安全,基于改善飞机平尾在负攻角下流动特性的应用需求,设计一种涡流发生器,安装在平尾下表面。通过数值模拟方法研究平尾在不安装涡流发生器和安装涡流发生器两种构型下的流动特征和机理,分析飞机在负攻角下的俯仰力矩特性。结果表明:安装涡流发生器的平尾负失速迎角推迟了4°,负攻角下的俯仰力矩拐点推迟了4°左右,拓宽了飞机的飞行边界。  相似文献   

17.
高超声速进气道边界层强制转捩试验   总被引:2,自引:0,他引:2  
在FL-31高超声速风洞分别开展了进气道的自然转捩和强制转捩风洞试验,试验Ma数为5、6和7,迎角为1°。通过红外热图得到了壁面的热流分布,从中得到了转捩区域。强制转捩装置为钻石型涡流发生器。随着涡流发生器高度的增加,强制转捩区域逐渐前移,得到了涡流发生器的有效高度,实现了强制转捩的目的。  相似文献   

18.
本文介绍了涡流发生器技术在航空发动机压气机中介机匣上的应用研究。合理地选择涡流发生器叶片参数,对消除或减小中介机匣流道分离,提高总压恢复都是可行的。h/H=0.14,l/h=2.4的一组涡流发生器不仅可以消除流体分离,还可减少流阻系数44%,从而可以改善出口流场品质,提高发动机性能。  相似文献   

19.
一种减小涡轮叶尖泄漏流的方法   总被引:2,自引:1,他引:1  
提出了一种叶尖逆向涡流发生器减小叶尖泄漏流的方法,利用压力面和叶顶面的压力差,将气流从压力面引入,从叶顶面逆着叶尖泄漏流方向高速射出减小叶尖泄漏流.对某典型毫米尺度涡轮叶栅进行了有/无逆向涡流发生器流场的数值对比分析,分析了不同进口条件下逆向涡流发生器对叶尖泄漏流和周向载荷的影响.结果发现:在典型进口条件下,逆向涡流发...  相似文献   

20.
李金鸽  楚武利  张皓光  郎进花  刘凯 《推进技术》2017,38(10):2331-2339
为探究楔形涡流发生器流动控制技术的作用机理,对一低来流马赫数高负荷扩压叶栅开展数值模拟研究。提出在叶片前缘安装涡流发生器的方案,并对比分析了采用涡流发生器前后叶栅性能及通道内二次流结构的改变。研究结果表明,楔形涡流发生器诱导的吸/压力面涡类似于叶片前缘的马蹄涡,卷吸附面层低能流体,提高其抗逆压梯度能力,进而削弱横向流动,抑制角区分离;涡流发生器的强漩涡结构改善了叶栅通道二次流,使得损失重新分布,叶栅-3°到7°攻角范围内的气动性能显著提升,设计点-1°攻角时平均总压损失系数下降8.04%,平均静压系数增大7.75%,5°攻角时平均总压损失系数下降15.87%,平均静压系数增大21.79%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号