首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
主要研究无界面层、裂解碳和氮化硼3种界面层体系对SiCf/SiC复合材料力学性能的影响:首先,三维四向编织的SiC纤维预制体分别经过无界面层处理、裂解碳界面层制备(CVI工艺)和BN界面层制备(PIP工艺)3种不同工艺处理;以聚碳硅烷为原料,采用PIP工艺制备出3种SiCf/SiC陶瓷基复合材料工艺试验件;对工艺试验件的基本力学性进行研究,评价不同纤维预制体处理工艺对材料性能的影响。研究结果表明,无涂层复合材料样品的弯曲强度最高;具有PyC涂层复合材料的弯曲强度略有下降,但断裂韧性较高;具有BN界面层的复合材料弯曲强度和断裂韧性均出现了较大程度的降低。3个样品力学性能的差别主要与纤维/界面层/基体之间作用力有关。本研究结果可以用于SiCf/SiC复合材料构件制造工作中,为制造工艺的初步筛选提供参考依据。  相似文献   

2.
用日本纺丝法制得的碳化硅纤维和国产纯铝箔为原料,采用真空液相压渗法制成单向增强的、纤维体积分数为17%和32%的SiC-Al复合材料。研究了这种复合材料在空气中的高温拉伸强度和高温暴露后的拉伸强度。复合材料的高温拉伸强度可保持到400℃。在500℃时才显著下降。460℃高温暴露直到100h,其强度不下降。 SiC-Al复合材料在500℃强度下降的原因可能是由于纤维与基体界面结合力降低引起载荷传递效率减少所致。高温暴露100h后强度下降可能是由于碳化硅纤维强度降低、基体晶粒粗化和纤维基体间界面结合减弱所致。  相似文献   

3.
单向Hi-Nicalon/SiC复合材料的工艺与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
对比了采用先驱体转化法及热压法制备的单向Hi-Nicalon纤维增强SiC基复合材料的性能差异,结果表明制备工艺对复合材料的微观结构和性能有极大的影响.采用先驱体转化制备的Hi-Nicalon/SiC复合材料具有较好的性能,弯曲强度为703.6MPa,断裂韧性为23.1MPa@m1/2;两种工艺制备的碳化硅基复合材料性能产生差别的主要原因是高温下Hi-Nicalon纤维的性能下降.  相似文献   

4.
氧化物/氧化物陶瓷基复合材料具有低密度、高强度、耐高温、抗氧化等优点,是航空航天热端构件理想的候选材料。本文从增强纤维、陶瓷基体、界面层、制备工艺、考核应用等方面综述了氧化物/氧化物陶瓷基复合材料的研究现状,着重阐述了商业化生产的氧化物纤维基本性能以及主要的氧化物/氧化物陶瓷基复合材料制备工艺,并指出提高氧化物纤维高温强度稳定性和优化复合材料制备工艺的途径。  相似文献   

5.
热压压力对B/Al复合材料组织结构及力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
使用表面覆有B4C涂层的硼纤维,采用大气等离子喷涂法制备连续硼纤维增强铝基复合材料预制片,结合真空热压扩散焊制备了纤维均匀分布的B/Al复合材料。探讨在接近铝基体熔点温度的条件下热压压力对复合材料力学性能与B/Al界面结合的影响,分析了B/Al界面结合状态与断口形貌及力学性能之间的关系。研究表明:热压压力对制备的B/Al复合材料的纤维体积分数、B纤维与Al基体的界面结合状态和拉伸强度有显著的影响;纤维表面的B4c涂层有效地防止了B纤维与Al基体间的界面反应,在温度6500C、压力10MPa的条件下,制备的纤维体积分数为42%的B/Al复合材料拉伸强度达到968MPa,达到了纤维理想强度的77%。  相似文献   

6.
钛基复合材料由于在中高温环境下具有很高的比强度、比模量以及良好的抗疲劳和抗蠕变特性,受到研究者的广泛关注。回顾了国内外该材料的发展历程,详细介绍了连续SiC纤维增强钛基复合材料的研制过程,包括SiC纤维制备、涂层制备、复合材料成型及构件制备等工艺过程。概述了研究团队近年来在连续SiC纤维增强钛基复合材料研究领域开展的工作及取得的进展,包括成功研制了高性能连续SiC纤维并实现小批量试制,设计了适用于不同增强基体合金的界面涂层,研究表明研制的C涂层可使复合材料经1100℃处理后界面涂层保存较好;实现了20~50μm性能优异的钛合金、铝合金、高温镍合金先驱丝的沉积;完成了Ф600mm×160mm尺寸的复合材料环形件及Ф50mm×300mm转动轴部件的试制。最后对该材料未来的发展趋势进行了展望。  相似文献   

7.
碳纤维由混编,软编制成预制体,后经致密化制成C/C销钉复合材料,讨论了编织方法,复合工艺,界面,加工性等影响C/C销钉的因素,高压碳化沥青碳基体与碳纤维界面结合强;纤维体积分数对碳销钉的强度起决定性作用,软编C/C销钉可机加性好,带轴纱4向软编C/C销钉的纤维含量高,剪切强度高达63.7MPa。  相似文献   

8.
基体与增强体间的界面对金属基复合材料的性质起着重要的作用。通过增强体表面处理和表面涂层可以使界面的性质得以改善。增强体涂层可分为金属涂层、陶瓷涂层 ;单层和多层涂层。涂层的常用制备方法有 :化学镀法、化学气相沉积法及溶胶 凝胶法等。本文针对铝基复合材料三种重要的增强体 :碳、碳化硅和氧化铝表面涂层以及它们对铝基复合材料的界面和性能的影响进行综述  相似文献   

9.
三维碳/碳化硅复合材料的显微结构与力学性能   总被引:12,自引:0,他引:12  
 利用三维碳纤维预制体,采用等温CVI法制备连续碳纤维增韧碳化硅陶瓷基复合材料。无热解碳界面层的复合材料,其力学性能随密度的增加而提高,但密度较高时却表现出脆性断裂特征。热解碳界面层的存在,有利于纤维的拔出,但由于其结晶程度较低,仍然存在纤维束内部的脆性断裂。  相似文献   

10.
高温处理对碳纤维及其复合材料性能的影响   总被引:4,自引:1,他引:4  
综合论述了高温处理对碳纤维的结构和强度的影响,以及热结构陶瓷基复合材料制备过程中预制体的高温处理工艺。通过综合分析,提出两种较为合理的预制体高温处理工艺:(1)CO中1600℃处理;(2)先进行的涂层处理再进行高温处理。  相似文献   

11.
 压力浸渍法是制造金属基复合材料方便而廉价的方法。在这种工艺过程中,能独立控制纤维预制件温度T_p、熔融金属温度T_m、浸渍压力P和冷却速度等重要工艺参数。在金属基复合材料中,纤维与基体间的界面反应使纤维强度下降,复合材料性能恶化,从而限制了复合材料的广泛使用。本文主要研究如何控制无涂层的P-55纤维与1100Al和Al-0.34%Ti合金之间的界面反应,讨论压力浸渍法工艺参数对P55/Al和P55/Al-Ti复合材料组织、性能的影响。结果表明:通过控制工艺参数来缩短纤维与熔融金属铝之间的接触时间和在基体中加入钛元素以降低碳在熔融铝中的活性可以制造出高性能的复合材料。  相似文献   

12.
探讨了树脂基体、碳纤维增强体以及树脂基体 纤维的界面等对双马来酰亚胺 (简称双马 )树脂基复合材料冲击后压缩强度 (CAI)值的影响 ,指出降低树脂基体的交联密度和产生微观两相结构是提高碳纤维 /双马复合材料CAI值的两个典型方法。合适的树脂含量有利于保持复合材料体系较高的CAI值 ,采用高强高韧性的碳纤维可明显提高复合材料体系的CAI值。为获得较高的CAI值 ,保持合适的树脂基体 纤维界面性能也是必要的  相似文献   

13.
采用真空热压烧结工艺制备了碳纤维体积分数分别为20%、40%和60%的高致密Cf/SiO2复合材料,研究了碳纤维含量对其组织结构,力学性能、热膨胀特性和抗氧化性能的影响规律。结果表明:SiO2基体及20%Cf/SiO2复合材料中,SiO2仍保持非晶态,碳纤维含量为40%和60%时,SiO2发生部分析晶;Cf/SiO2复合材料的抗弯强度、断裂韧性和断裂应变,随碳纤维含量增加均呈现先降低后又增加的趋势,而弹性模量则先增后降;60%Cf/SiO2表现出明显伪塑性;碳纤维含量增大,使复合材料的热膨胀系数成倍增加,抗氧化性变差。  相似文献   

14.
 对用快速液相气化法制备的碳 /碳复合材料进行了石墨化处理;用 X-ray衍射技术和扫描电子显微镜对高温处理前后材料的微观组织结构及断口形貌进行了研究观察;分析了影响石墨化前后微观结构、力学性能变化及断裂失效模式的因素及机理。结果表明 :经石墨化处理后,d002 值降低,Lc 值升高,弯曲强度σf大幅度降低,层间剪切强度 ILSS升高,但随热处理温度提高,ILSS值有降低趋势。  相似文献   

15.
使用不同织造方式(二维机织,法向增强2.5维机织和三维五向编织)制备了3种SiC纤维预制体,采用树脂转移模塑(RTM)和聚合物浸渍裂解(PIP)工艺制备了SiC_f/PyC/SiBCN复合材料。观察复合材料的显微组织,测试弯曲强度、拉伸强度、压缩强度等力学性能,探究不同预制体结构对复合材料力学性能的影响行为。结果表明:同一预制体结构在不同方向的纤维分布不同导致材料力学性能的各向异性;不同预制体结构对材料力学性能有着显著的影响。  相似文献   

16.
碳纤维增强可溶性聚芳醚树脂基复合材料的表面与界面   总被引:1,自引:0,他引:1  
首次对碳纤维增强含二氮杂萘酮联苯型聚芳醚砜酮(PPESK)基高性能热塑性树脂基复合材料的界面进行了研究。采用空气冷等离子体处理方法对碳纤维表面进行处理。用XPS测试分析了不同等离子体处理时间对CF-原丝表面元素组成的影响及其变化规律。用FT-IR测试分析了经等离子体处理前后碳纤维表面的官能团的变化。采用动态接触角测试分析了不同处理时间下,碳纤维浸润性的变化规律,进一步分析了复合材料界面的粘结机理。采用AFM测试分析等离子体处理时间对碳纤维表面粗糙度的影响。利用ILSS测试方法表征了碳纤维/PPESK复合材料的层间剪切强度,确定了最佳的等离子体处理条件。利用SEM观察了碳纤维/PPESK树脂基复合材料的层间剪切破坏形貌。结果表明:对碳纤维的最佳的等离子体处理条件为:处理功率200W,处理时间15m in。在这一条件下处理碳纤维,复合材料的ILSS值最达可提高13.5%。经过适当的等离子体处理后,碳纤维表面的极性基团的含量、浸润性能和粗糙度均得到改善,增强纤维与树脂基体间界面的粘结性能得到提高,从而提高了复合材料的力学性能。  相似文献   

17.
为提高高模量碳纤维复合材料的力学性能,研究改性氰酸酯、5228、4211与碳纤维结合面结合性能.用SEM、AFM、微脱粘仪、万能力学试验机等仪器设备,观察了碳纤维表面微观形貌、树脂基体与碳纤维结合面微观粘接情况,并对复合材料的宏观力学性能进行分析研究.结果表明,高模量碳纤维随着模量的提高,袁层的缺陷与沟槽减少、表面活性降低,与树脂的结合面粘接强度减弱;改性氰酸酯与纤维的结合面粘接性能较好、5228次之、4211较差;树脂与纤维结合面粘接强度大的,其复合材料的力学性能好.  相似文献   

18.
采用XRD,HRTEM 和SEM 等分析测试手段,研究了以聚碳硅烷(PCS)为先驱体和粘结剂,Y2O3 和AlN 为烧结助剂,采用先驱体转化-热压烧结法制备的Cf/SiC复合材料的显微结构。结果表明,Y2O3 主要与PCS的裂解产物以及AlN 和SiC表面的氧化物发生反应,形成有助于复合材料致密化的液相,而AlN 则与烧结液相和PCS之间通过反应- 溶解- 沉积过程,形成主要分布于界面相中的微小SiC-AlN 固溶体。正是由于含有一定量SiC-AlN 固溶体的富碳界面相使纤维与基体之间的结合适中,纤维易发挥脱粘和拔出作用,复合材料具有很好的力学性能  相似文献   

19.
为了研究纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响,将T300碳纤维在氮气氛围中进行不同温度的热处理后,采用液硅熔渗法制备了C/C-SiC复合材料。采用光电子能谱(XPS)对纤维表面成分进行了分析。结果表明:未处理纤维表面具有较高的氧含量,随着热处理温度的升高,纤维表面氧含量逐渐降低,导致纤维表面含氧官能团数目减少。扫描电镜(SEM)观察发现:未处理纤维增强的C/C预制体,孔隙尺寸较大且孔隙率低;而经1 500℃热处理纤维增强的预制体,孔隙尺寸较小但孔隙率高。随后对C/C预制体进行液硅熔渗处理,并对熔渗反应过程分析发现:由未处理纤维增强的预制体,液硅熔渗反应主要受溶解-沉淀和界面限制的扩散反应过程控制,获得的C/C-SiC复合材料中SiC基体相分布规则且含量较低,同时含有较高的残留Si;而经1 500℃热处理纤维增强的预制体,熔渗反应则主要受溶解-沉淀过程控制,获得的C/C-SiC复合材料中SiC基体含量多且分布较均匀,残留Si含量较少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号