首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18 degrees C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and approximately 30% of the oligomers include one or more 3'-5' linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.  相似文献   

2.
A commonly accepted view is that life began in a marine environment, which would imply the presence of inorganic ions such as Na+, Cl-, Mg2+, Ca2+, and Fe2+. We have investigated two processes relevant to the origin of life--membrane self-assembly and RNA polymerization--and established that both are adversely affected by ionic solute concentrations much lower than those of contemporary oceans. In particular, monocarboxylic acid vesicles, which are plausible models of primitive membrane systems, are completely disrupted by low concentrations of divalent cations, such as magnesium and calcium, and by high sodium chloride concentrations as well. Similarly, a nonenzymatic, nontemplated polymerization of activated RNA monomers in ice/eutectic phases (in a solution of low initial ionic strength) yields oligomers with > 80% of the original monomers incorporated, but polymerization in initially higher ionic strength aqueous solutions is markedly inhibited. These observations suggest that cellular life may not have begun in a marine environment because the abundance of ionic inorganic solutes would have significantly inhibited the chemical and physical processes that lead to self-assembly of more complex molecular systems.  相似文献   

3.
Ross DS 《Astrobiology》2008,8(2):267-272
The significance of W?chtersh?user's iron-sulfur world to the origin of life and the limits to its notional autocatalytic cycles are examined in kinetic simulations of the chain polymerization sequence: primitive materials-->amino acids-->oligomers. The simulations were run for the formation of all oligomers up to the 20-mer over a 1 Gy interval from the end of the period of heavy bombardment, during which period life emerged. Upper-limit rate constant estimates developed from the studies of Huber and W?chtersh?user were employed. The simulations showed that oligomer production consistent with life's start within that interval emerges only with an autocatalyst exhibiting a catalytic proficiency comparable to that of contemporary enzymes. The simulations, moreover, ignored likely thermodynamic and statistical burdens which, if included, would have led to the need for catalytic capacities well in excess of those in present-day enzymes. Prebiotic oligomers with such levels of activity are clearly not likely, and it is apparent that the iron-sulfur scheme could not have played a role in life's beginnings.  相似文献   

4.
Cleaves HJ 《Astrobiology》2002,2(4):403-415
It has been suggested that life began with a self-replicating RNA molecule. However, after much research into the prebiotic synthesis of RNA, the difficulties encountered have lead some to hypothesize that RNA was preceded by a simpler molecule, one more easily synthesized prebiotically. Many of the proposed alternative molecules are based on acrolein, since it reacts readily with nucleophiles, such as the nucleobases, via Michael addition and is readily synthesized from formaldehyde and acetaldehyde. Reports regarding the reactions of nucleobases with concentrated acrolein solutions suggest that this is a plausible reaction mechanism, though there are also reports that the "incorrect" isomers are obtained. The scope and kinetics of the reaction of acrolein with various nitrogen heterocycles are reported here. Reactions of pyrimidines often give N(1) adducts as the major products. Reactions of purines often give N(9) adducts in good yield. The reactions are rapid under neutral to slightly alkaline conditions, and proceed at low temperatures and dilutions. The implications of these findings for the origin of life are discussed.  相似文献   

5.
Wu M  Higgs PG 《Astrobiology》2011,11(9):895-906
Ribozymes that act as polymerases and nucleotide synthases are known experimentally, even though no fully self-replicating system has yet been found. If the RNA World hypothesis is true, ribozymes must have arisen initially from within a random abiotic polymerization system. To investigate the origin of the RNA world, we studied a mathematical model of a chemical reaction system describing RNA polymerization. It is supposed that, in absence of ribozymes, polymerization occurs at a small spontaneous rate, and that in the presence of polymerase ribozymes, polymerization occurs at a faster rate that is proportional to the ribozyme concentration. Chains must be longer than a minimum threshold length in order to have the possibility of acting as ribozymes. The reaction system has two stable states that we term dead and living. The dead state is controlled by the small spontaneous rate and has negligible concentration of ribozymes. The living state has high concentration of ribozymes, and the reaction rates are determined by the ribozymes; thus, the system is autocatalytic. Concentration fluctuations in a finite volume can cause a transition to occur from the dead to the living state, that is, an origin of life occurs within this model. We also consider ribozymes that catalyze nucleotide synthesis. We show that living and dead states arise in the presence of synthase ribozymes in the same way as for polymerases. It has been proposed that recombination reactions are a way of generating long RNA chains in the early stages of life. We show that if the possibility of random reversible recombination reactions is added to our model, this does not lead to an increase in long polymer concentration. Thus, if recombination is fully reversible, there is no autocatalytic state controlled by recombination. Nevertheless, recombination can play an important role in ribozyme synthesis if there is an additional process that keeps the recombination reactions out of equilibrium. We modeled a case studied experimentally in which building block strands of moderate length associate due to RNA secondary structure formation. A recombination reaction then occurs between these strands to form a longer sequence that catalyzes its own formation via the recombination reaction. This system has an autocatalytic state, and it is possible for it to arise within our random polymerization system. If complexes formed by associations of shorter strands can act as catalysts without the requirement that the strands be covalently linked, this would alleviate the need for synthesis of very long strands; hence, it makes the emergence of an autocatalytic system from an abiotic random polymerization system much more likely.  相似文献   

6.
The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5?GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.  相似文献   

7.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   

8.
The jets of icy particles and water vapor issuing from the south pole of Enceladus are evidence for activity driven by some geophysical energy source. The vapor has also been shown to contain simple organic compounds, and the south polar terrain is bathed in excess heat coming from below. The source of the ice and vapor, and the mechanisms that accelerate the material into space, remain obscure. However, it is possible that a liquid water environment exists beneath the south polar cap, which may be conducive to life. Several theories for the origin of life on Earth would apply to Enceladus. These are (1) origin in an organic-rich mixture, (2) origin in the redox gradient of a submarine vent, and (3) panspermia. There are three microbial ecosystems on Earth that do not rely on sunlight, oxygen, or organics produced at the surface and, thus, provide analogues for possible ecologies on Enceladus. Two of these ecosystems are found deep in volcanic rock, and the primary productivity is based on the consumption by methanogens of hydrogen produced by rock reactions with water. The third ecosystem is found deep below the surface in South Africa and is based on sulfur-reducing bacteria consuming hydrogen and sulfate, both of which are ultimately produced by radioactive decay. Methane has been detected in the plume of Enceladus and may be biological in origin. An indicator of biological origin may be the ratio of non-methane hydrocarbons to methane, which is very low (0.001) for biological sources but is higher (0.1-0.01) for nonbiological sources. Thus, Cassini's instruments may detect plausible evidence for life by analysis of hydrocarbons in the plume during close encounters.  相似文献   

9.
Davies PC 《Astrobiology》2003,3(4):673-679
The hypothesis that life's rapid appearance on Earth justifies the belief that life is widespread in the universe has been investigated mathematically by Lineweaver and Davis (Astrobiology 2002;2:293-304). However, a rapid appearance could also be interpreted as evidence for a nonterrestrial origin. I attempt to quantify the relative probabilities for a non-indigenous versus indigenous origin, on the assumption that biogenesis involves one or more highly improbable steps, using a generalization of Carter's well-known observer-selection argument. The analysis is specifically applied to a Martian origin of life, with subsequent transfer to Earth within impact ejecta. My main result is that the relatively greater probability of a Martian origin rises sharply as a function of the number of difficult steps involved in biogenesis. The actual numerical factor depends on what is assumed about conditions on early Mars, but for a wide range of assumptions a Martian origin of life is decisively favored. By contrast, an extrasolar origin seems unlikely using the same analysis. These results complement those of Lineweaver and Davis.  相似文献   

10.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.  相似文献   

11.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   

12.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   

13.
Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to have been produced from amphiphilic compounds on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. The goal of future investigations will be to fabricate artificial cells as models of the origin of life.  相似文献   

14.
A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.  相似文献   

15.
The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.  相似文献   

16.
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.  相似文献   

17.
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.  相似文献   

18.
It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved-rapidly-life-must-be-common argument. We use the observational constraints on the rapidity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than approximately 1 Gyr, the probability of biogenesis is > 13% at the 95% confidence level. This quantifies an important term in the Drake Equation but does not necessarily mean that life is common in the Universe.  相似文献   

19.
Tsokolov S 《Astrobiology》2010,10(10):1031-1042
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.  相似文献   

20.
Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号