首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
对TA15电子束焊接接头的熔凝区和热影响区的显微组织、硬度、疲劳裂纹扩展速率、以及疲劳断口形貌进行了研究。结果表明:熔凝区的显微组织主要为粗针状α′马氏体组织,热影响区组织为α′马氏体组织+条片状的α相和β相,由接近熔凝区组织向母材组织过渡。母材的硬度较低,熔凝区平均硬度最高,热影响区的硬度介于两者之间。疲劳裂纹扩展速率高低与其显微组织密切相关,含塑性较好的片状α相较多的热影响区比熔凝区有较高的裂纹扩展抗力。  相似文献   

2.
强流脉冲电子束金属材料表面改性处理   总被引:1,自引:0,他引:1  
对典型金属材料,包括共析钢T8、模具钢D2和金属间化合物Fe-40Al进行强流脉冲电子束表面改性试验,分析了处理层显微组织和性能变化规律,明确"脉冲加热"与"脉冲熔化"处理模式,探讨强流脉冲电子束金属材料表面改性的工艺方法.  相似文献   

3.
使用IPG YLS-5000多模光纤激光器实现了12mm厚TC4钛合金光纤激光窄间隙焊接,优化了焊接工艺,并对焊缝组织和显微硬度进行了分析.结果表明:激光窄间隙焊接容易产生气孔和侧壁未熔合缺陷,优化后的焊接工艺能显著减少气孔并消除未融合缺陷.母材显微组织为典型的等轴组织,焊缝区显微组织由粗大的β柱状晶和网篮状马氏体α'组成.热影响区晶粒尺寸明显细化.热影响区组织由细小的针状马氏体α'、转变α组织和β转变组织构成.焊缝区和热影响区的显微硬度高于母材,近焊缝热影响区显微硬度达到最大值.  相似文献   

4.
采用电子束扫描焊和修饰焊工艺对5mm AF1410钢板进行电子束焊接。针对热处理前、后的接头,采用光学显微镜、扫描电镜、硬度仪等对其组织、硬度及拉伸断口进行分析。结果表明:接头热影响区分为浅腐蚀区和深腐蚀区,分别为单一马氏体(M)、M+少量逆转奥氏体(Ar)组织;焊缝区柱状晶分为重熔区、正火区和回火区,晶内为马氏体,晶界附近为残留奥氏体。热处理后,接头组织、显微硬度与母材趋于一致,抗拉强度也达到了母材98%以上,失效裂纹始于热影响区,呈约60°方向扩展并贯穿整个接头。  相似文献   

5.
对采用电子束表面微造型技术加工的TC4钛合金非光滑表面进行了研究。研究发现,通过该技术加工的非光滑表面具有截面为波浪形的沟槽,而且通过调节加工参数,可制备不同尺寸特征的沟槽。加工的沟槽沟脊处存在连续分布的鱼鳞状形貌,而沟谷处存在连续分布的倒V形条纹,鱼鳞形貌大小和V形条纹的间距均与加工参数有关。加工后的近表面从上至下由熔化区、热影响区和母材组成,熔化区由马氏体组成,热影响区位于熔化区和母材之间,其微观组织与母材也存在很大差异。熔化区和热影响区的显微硬度均要高于母材,而且在熔化区和热影响区的界面处存在显微硬度的最大值。电子束表面微造型的减阻效果可以达到15%以上。  相似文献   

6.
以ZTC4钛合金电子束焊接接头为研究对象,通过显微硬度试验、金相分析以及常规力学性能试验,讨论了电子束焊接接头不同位置的组织、形态差异,探究显微组织与接头显微硬度的相关性,以及电子束焊接接头的拉伸性能和冲击性能。通过组织分析及显微硬度测试发现,ZTC4合金电子束焊缝微观组织由原始β相转变为针状α'相,即针状马氏体,其热影响区组织为片状α相与原始β相的混合物,且焊缝处显微硬度最高,热影响区其次,母材最低。通过力学性能测试发现,电子束焊接接头的拉伸和冲击性能与母材相当,说明采用电子束焊接ZTC4可以得到力学性能良好的焊接接头。  相似文献   

7.
利用双侧激光同步焊接的方法获得TC4合金T形接头,对接头进行光学显微组织观察以及拉伸性能测试,分析了接头的显微组织与力学性能。结果表明,T形接头母材显微组织为α+β等轴组织。焊缝区显微组织由粗大的β柱状晶和网篮状马氏体组成,蒙皮侧焊缝区柱状晶和马氏体晶粒比加强筋侧细小。热影响区显微组织由细小的针状马氏体、针状α相和少量等轴初生α相组成,蒙皮侧热影响区比加强筋侧窄。T形接头焊缝区拉伸强度大于母材,接头拉伸断裂均发生在离焊缝中心较远的母材上。  相似文献   

8.
为了进一步优化TA15钛合金电子束焊接接头的强韧性匹配,研究了添加纯钛夹层对焊接接头力学性能的影响。利用扫描电镜对焊接接头显微组织进行了表征,对添加不同纯钛夹层条件下焊接接头的硬度、拉伸性能、冲击韧性、断裂韧性进行对比分析。研究结果表明:添加纯钛夹层对焊缝显微组织形态无明显影响;焊缝熔合区中部硬度存在低谷,而硬度在热影响区则出现峰值。  相似文献   

9.
采用电子束焊接对10mm TA12钛合金进行了焊接,焊缝表面形成良好.对TA12钛合金电子束焊接试样进行了金相分析和静力试验、冲击试验和扫描电镜(SEM)分析.结果表明,焊接接头熔合区、热影响区和母材区的微观组织差别明显;随着等轴α相体积分数的减少,接头塑性和冲击韧性值降低,但是拉伸强度变化不大.  相似文献   

10.
研究TC4-DT损伤容限型钛合金线性摩擦焊(linear friction welding,LFW)接头的组织特征及形成机制。利用光镜和扫描电镜对接头各区域微观组织进行表征,利用显微硬度计测试接头的显微硬度分布。结果表明:接头焊缝区(WZ)发生动态再结晶,焊接过程中WZ温度超过β转变点,焊后快冷的条件下发生了β→α′及β→α两种相变并析出了大量α′马氏体以及二次层片α;TC4-DT钛合金母材(BM)组织具有较高的变形抗力,使得接头形成的热力影响区(TMAZ)较窄。TMAZ内组织在强烈的热力耦合作用下拉长变形并破碎,焊后快冷的条件下析出少量α′马氏体及大量二次层片α;毗邻TMAZ的热影响区(HAZ)基本保留了BM不同位向的α集束的组织特征,但受热的影响α集束内α/β相界两侧元素相互扩散,层间β消耗,初生α长大;WZ组织的细晶强化和第二相强化,TMAZ组织的应变强化和第二相强化,以及HAZ内α相的长大使得接头上述区域显微硬度均高于BM。  相似文献   

11.
TC17钛合金焊接接头组织与力学性能分析   总被引:1,自引:0,他引:1  
对TC17钛合金薄板采用氩弧焊和电子束焊两种焊接方法焊接,进行了拉伸试验,结合拉伸试验结果与断口形貌,对比分析了力学性能与焊接接头组织之间的联系。研究结果表明,TC17钛合金在经历TIG焊接热循环后,焊缝及靠近焊缝的热影响区晶粒粗化,电子束焊接头热影响区较窄且没有粗晶区形成;两种焊接试样抗拉强度均与母材等强;相对延伸率有所降低,主要是热影响区及焊缝的组织变化所致;氩弧焊焊缝组织较不均匀性更为显著。  相似文献   

12.
研究了TC17钛合金惯性摩擦焊焊接接头的疲劳裂纹扩展规律,并利用光学显微镜、扫描电镜对材料的显微组织和断口形貌进行分析。结果表明:TC17钛合金母材为α+β网篮状组织,晶粒较大;焊缝区和热影响区内可以看到明显的原β相晶界,焊缝区的原β晶粒较细小,热影响区的原β晶粒较粗大,晶粒内部存在细小的α相。在室温下,当ΔK≤15 MPa.m1/2时,焊缝区疲劳裂纹扩展速率较小,而当ΔK≥15 MPa.m1/2时,焊缝区的扩展速率最大,其次是热影响区,母材的裂纹扩展速率最小;在高温下,焊接接头各部位的裂纹扩展速率相差不大,均小于室温。  相似文献   

13.
通过对6 mm厚的A356-T6/6061-T6异种铝合金的搅拌摩擦焊工艺试验研究,采用OM、SEM、万能拉伸试验机、显微硬度仪等分析了母材位置、焊接速度对接头组织和性能的影响。研究结果表明:当旋转速度为1 000 r/min、焊接速度为100~400 mm/min时,均可获得内部无明显缺陷、外观良好的异种铝合金接头;A356-T6铝合金置于前进侧时有利于材料的迁移,焊缝区组织由典型的焊核区、热机械影响区和热影响区特征组织组成,焊核区域晶粒由表层向底层逐渐细化;接头拉伸性能随焊接速度的增加而增大;焊接速度较低时,A356合金位于前进侧有利于获得强度更高的接头,而焊接速度较高时,6061位于前进侧有利于获得高性能接头,且接头的屈服强度和延伸率均较A356位于前进侧时高;无论A356还是6061置于前进侧,接头的断裂位置均位于A356侧热影响区,与母材放置位置无关,这与焊缝硬度最小值区位置相吻合。  相似文献   

14.
研究了TA15钛合金氩弧焊焊接接头超声冲击前后的组织及力学性能,并对接头拉伸断口进行了观察。结果表明,焊接后焊缝区和热影响区的组织与母材的组织差别很大,表现为魏氏组织特征;超声冲击前后母材和接头的组织均变化不大。冲击处理使焊缝区和母材区的强度和伸长率均有所增加。冲击前后的焊缝及母材的室温拉伸断口均属于韧窝型断口。冲击后接头的表面和断面显微硬度均得到了提高。  相似文献   

15.
通过搅拌摩擦焊实现了5 mm纯钛的可靠连接,并对焊接接头组织进行了细致研究。通过光学、扫描电子显微镜和透射电子显微镜对纯钛搅拌摩擦焊组织进行了精细表征,对焊接过程中的再结晶机制进行了研究。结果表明:采用搅拌摩擦焊可以得到成型良好,组织致密的焊缝;焊缝组织可以分为焊核区( NZ)、热机影响区( TMAZ)、热影响区( HAZ)和母材区( BM);根据各区组织形态和结构特点对纯钛搅拌摩擦焊动态再结晶过程进行了分析,揭示了纯钛搅拌摩擦焊焊缝细化机制;钛的层错能较大,搅拌摩擦产生的位错不能完全分解,遇到阻碍时,只能通过滑移和攀移继续运动,在多次搅拌摩擦作用下,位错缠结堆积,位错密度不断上升,产生新的晶界,从而形成细小晶粒,实现晶粒细化。  相似文献   

16.
采用冷喷涂技术在2219铝合金搅拌摩擦焊接头上制备Al涂层,以提高搅拌摩擦焊接头耐蚀性。通过数字显微镜、扫描电镜、电化学工作站对Al涂层的结构及耐蚀性进行表征。结果表明:冷喷Al涂层质量良好,孔隙率仅为0.77%,涂层内部存在等轴晶、细化晶粒以及拉长晶粒,涂层界面以机械咬合为主,涂层/接头区界面质量明显优于涂层/母材区界面;电化学数据显示,涂层腐蚀敏感性较低,自腐蚀电位和腐蚀电流密度均低于热影响区,冷喷涂层降低了搅拌摩擦焊接头的腐蚀敏感性;晶间腐蚀实验表明,腐蚀6 h后,涂层最大腐蚀深度仅为热影响区最大腐蚀深度的50%,证明冷喷涂技术显著改善了搅拌摩擦焊接头的耐腐蚀性。  相似文献   

17.
As-cast beryllium-aluminum (Be-Al) alloy exhibits a coarse microstructure with pore defects due to a large solidification interval, greatly limiting its mechanical properties. In this research, the relationship between laser surface remelting process and microstructure and hardness of as-cast Be-Al-Sc-Zr alloy was established. The experimental results demonstrated that a pore-free refined microstructure of remelted layer was obtained by controlling the parameter of effective laser energy input. The microstructure of as-cast Be-Al-Sc-Zr alloy consisted of equiaxed grains with Al phase forming a continuous frame wrapping Be phase, which was significantly refined in the remelted zone (from 25 μm to 2 μm). The Vickers hardness in the remelted zone (approximately 210 HV) was approximately 3 times that of as-cast Be-Al-Sc-Zr alloy. Analysis of the Vickers hardness and the Be phase size showed a good agreement with a Hall-Petch equation. In addition, transmission electron microscopy (TEM), auger electron spectroscopy (AES) and X-ray diffraction (XRD) analysis evidenced that Sc and Zr elements formed a single blocky phase Be13(Scx,Zr1-x), which was also greatly refined from 8 μm to 1.5 μm in the remelted zone. The results obtained in this study indicate that the laser surface remelting allowed refining the microstructure and further strengthening the Vickers hardness of Be-Al-Sc-Zr alloy.  相似文献   

18.
为揭示高温合金电子束焊接头的疲劳特性,对其开展了疲劳裂纹萌生数值模拟研究。考虑焊缝区微观组织特性,对Voronoi图法进行改进,建立了焊缝区包含柱状晶、细等轴晶及粗等轴晶的混合晶区微观组织模型;对ABAQUS进行二次开发,考虑晶粒随机取向,生成晶粒多滑移带模型。基于Tanaka-Mura位错滑移模型,编写了疲劳裂纹萌生算法,考虑晶界处裂纹的连接与合并,对算法进行了改进,并结合有限元计算建立了电子束焊接头疲劳裂纹萌生数值模拟方法。基于上述方法对GH4169电子束焊接头不同载荷大小的疲劳裂纹萌生进行数值模拟,分析了裂纹萌生过程及萌生寿命,并与试验结果进行对比验证;还探讨了不同热影响区晶粒尺寸对焊接接头疲劳裂纹萌生的影响规律。结果表明,电子束焊接头疲劳裂纹均萌生于热影响区,但随着载荷水平的提高,萌生位置向熔合区一侧靠近;当热影响区晶粒尺寸与母材区晶粒尺寸越接近时,接头疲劳寿命越长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号