首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于多块粘性结构网格,开展了三维N-S方程数值算法的研究。控制方程的空间离散采用有限体积法,在前人工作的基础上,发展了Van Leer+AUSM混合格式并应用到对流通量的离散中,粘性项采用中心格式离散并利用格林定理计算粘性通量中的导数项,时间推进采用五步R-K法,湍流模型为S-A一方程模型。最后,以M6机翼和某超声速弹丸的粘性流场作为数值算例,计算表明:发展的数值算法对跨声速、超声速流场均具有较高的分辨率,适用于跨、超声速流场的数值模拟。  相似文献   

2.
旋转离心叶轮内湍流的非结构化网格数值计算   总被引:5,自引:0,他引:5  
给出了同位非结构化网格数值求解旋转离心叶轮内湍流流场的SIMPLE算法。网格划分采用改进的阵面推进法。控制方程采用通用的对流扩散方程并利用有限控制容积法离散。湍流模型采用标准的k-ε模型。形成的代数方程组用带有预条件器的共轭梯度平方法(CGS)求解。最后利用所给出的算法对一实验用的旋转离心叶轮进行计算。计算结果和实验数据基本相符,说明该算法合理,编程正确,可作为流场预测的理论工具。  相似文献   

3.
采用间断有限元方法对雷诺平均Navier-Stokes(RANS)方程进行了数值求解,对Spalart-Allmaras单方程湍流模型进行了部分修正,使得求解器更加鲁棒。构造了分段高次多项式来逼近真实物面,同时物面附近采用多层弯曲网格来避免网格交叉,此外提出了一种快速计算积分点的曲面物面距的方法。采用混合网格对NACA0012翼型以及RAE翼型进行了数值计算,并与实验数据以及前人数据进行了对比。计算结果表明,采用物面弯曲网格结合修正的湍流模型方法在相对稀疏的网格上就能得到比较好的数值解。  相似文献   

4.
高阶精度格式WCNS-E-5在亚跨声速流动中的应用研究   总被引:3,自引:0,他引:3  
采用高阶精度非线性紧致加权格式WCNS-E-5和Baldwin-Lomax模型,求解雷诺平均Navier-Stokes方程,开展了典型翼型与机翼的湍流流动数值模拟研究.对方程中粘性项采用的四阶精度差分近似以及网格导数求解与边界格式的四阶精度,保证了高精度算法的实现.计算结果表明:本文算法能够准确地模拟这些翼型与机翼的亚跨声速流场,得到与实验测量十分吻合的壁面压力分布,计算结果对网格的依赖性小.  相似文献   

5.
两种湍流模型在跨声速绕流计算的应用研究   总被引:2,自引:0,他引:2  
湍流模型在对复杂流场的数值计算中起着非常重要的作用.本文采用SA一方程湍流模型和SST k-ω二方程湍流模型,通过解耦求解雷诺平均N-S方程和湍流模型方程实现对亚跨超声速湍流流场的数值模拟.对NACA0012翼型和ONERA-M6机翼跨声速绕流流场进行了计算,对压力分布和激波位置与实验结果进行了细致的比较,并分析了不同离散格式、不同网格疏密及壁面函数对计算结果的影响,在计算过程中这两个模型体现出了较好的简捷性和健壮性.  相似文献   

6.
风力机标模非定常数值模拟中的影响因素研究   总被引:1,自引:0,他引:1  
基于自主研发的“亚跨超 CFD 软件平台”(TRIP3.0),采用刚性运动网格技术和动态拼接网格技术,开发了针对旋转类机械的非定常求解模块。本文开展了 NREL Phase VI 风力机标模非定常数值模拟中的影响因素研究,影响因素主要包括不同时间步长的影响、不同湍流模型的影响、刚性动网格技术和动态拼接网格技术的影响三个方面。本文数值模拟采用的控制方程为雷诺平均 N-S 方程,采用有限体积法离散控制方程,离散方程的时间方向采用“双时间步”方法求解,空间方向无粘项离散采用 MUSCL-Roe 格式,湍流模型采用 SA 和 SST 湍流模型,并引入多重网格和并行计算技术加速求解。数值模拟结果表明:时间步长、湍流模型、网格方案等因素主要影响风力机叶片吸力面的流动结构,进而影响吸力面的压力分布,而对压力面的流动结构和压力分布基本没有影响;采用刚性运动网格结合 SA 湍流模型所得到的压力分布更接近实验值。  相似文献   

7.
用θ加权法离散时间域,并将四种稳定化方案与无网格Galerkin方法相耦合进行空间域的离散。在无网格Galerkin方法中,采用线性基和具有连续的权函数,基于移动最小二乘法构造了高阶导数连续的形函数,从而避免了有限元方法中采用线性元插值时,因忽略稳定项中二阶导数项而降低计算精度的问题。数值计算表明:本文构造的方法成功地消除了非定常对流扩散方程中对流项占优时的数值伪振荡现象,并具有计算精度高、稳定性好、算法实施简单、前后处理方便的优点。特别是所构造的MFLS方法非常适宜于求解非定常的对流扩散方程。  相似文献   

8.
湍流模型离散精度对数值模拟影响的计算分析   总被引:1,自引:0,他引:1  
王运涛  孙岩  王光学  张玉伦  李松 《航空学报》2015,36(5):1453-1459
基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用五阶空间离散精度的加权紧致非线性格式(WCNS),通过改变物面法向第一层网格间距,开展了剪切应力输运(SST)两方程模型不同离散精度的数值分析。主要目的是为高阶精度格式在复杂外形上的应用提供技术支撑。计算模型包含了低速NLR 7301两段翼型和高速RAE2822翼型,研究内容主要包括湍流模型的二阶精度离散和五阶精度离散两种方式对收敛历程、边界层湍流黏性系数分布、边界层速度分布、压力系数分布以及气动特性的影响。在与试验数据对比的基础上,计算结果表明:对于不同的第一层物面法向网格间距,湍流模型离散精度对低速绕流计算结果有比较明显的影响,对于高速小迎角附着流动计算结果影响不明显;相对于湍流模型二阶精度离散,湍流模型高阶精度离散网格敏感性较弱,具有更高的数值模拟精度,但收敛性略差。  相似文献   

9.
在工程实际中,一方程湍流模型或两方程湍流模型的求解通常和雷诺平均Navier-Stockes (RANS)方程的求解是解耦的,也称之为松耦合求解.在松耦合求解过程中,RANS方程和湍流模型方程通常采用不同的数值方法异步求解.这种求解方式很容易产生因两者计算精度不一致而引起的额外数值耗散.为了消除这种耗散,将RANS方程与Spalart-Allmaras模型方程耦合成一个系统方程——强耦合RANS方程,并发展了一种用于求解该系统方程的高效强耦合算法,其中对流项离散采用了Roe格式,时间项的离散采用了隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)格式,为了提高计算效率,采用了三层V循环多重网格方法.通过翼型/机翼和振荡翼型/机翼等算例验证了本文发展的强耦合算法不仅具有较好的收敛性,而且计算精度明显优于松耦合算法,特别对于阻力的预测,强耦合算法更加准确.  相似文献   

10.
本文通过数值求解三维可压缩雷诺平均NS方程,研究发析了振动三角翼的三维复杂非定常流场,其中对流场项计算格式的空间离散在平行物物理面方向与物面法线方向的空间导数分别采用二阶NND格式和由NND格式高阶插值而得到的三阶迎风格式,时间推进为隐式LU分解方法,并使用了修正的代数BL湍流模型模拟高雷诺数的湍流流动。  相似文献   

11.
对小流量高速离心叶轮一维气动优化设计及快速三维造型方法进行了研究,并发展了相应的计算程序.采用所述的方法,以Krain叶轮为基准对象,在保证原设计点性能的情况下进行了叶轮的全新参数设计和快速三维造型.造型中对叶片中心线进行了曲率优化控制,使得叶片符合气动性能优良的“S”型叶片.最后采用经校验的CFD软件对新设计的叶轮进行了全三维数值验证.数值验证结果显示:在设计流量时等熵效率为93.9%,增压比为4.794,与Krain叶轮设计点CFD验证的结果偏差分别为0.24%和2.14%,验证了该设计方法及程序的可行性.   相似文献   

12.
用粘性体积力方法计算高速离心压气机叶轮内部流场   总被引:5,自引:0,他引:5  
高速离心压气机是用途非常广泛的一种动力机械,充分了解其内部复杂的三维流场对设计高压比、高效率离心压气机具有很重大的意义。本文采用一种简化的Navier-Stokes方程的计算方法-粘性体积力方法,计算了Krain叶轮内部流场。使用H型网格离散微分方程,并采用多重网格方法和当地时间步长方法加速计算收敛。粘性应力通过Baldwin-Lomax模型计算。为了证明计算结果的有效性,文中也给出了相应的激光测量结果。   相似文献   

13.
长中短叶片离心叶轮内部流动的数值模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
1引言随着宇航技术的飞速发展,液体火箭发动机的燃料剂和氧化剂离心泵向高压、高速、高效化发展。为了减轻泵的重量,使结构紧凑,提高泵的功率密度,离心泵的单级扬程和转速要高,因此其比转速较低。但比转速较低的离心泵效率也较低,而且很容易出现小流量工作不稳定性。因此设计具  相似文献   

14.
基于S-A湍流模型和间歇因子输运方程的转捩流数值模拟   总被引:1,自引:0,他引:1  
杜磊  宁方飞 《航空动力学报》2015,30(10):2450-2461
考虑到γ-Reθt转捩模型中间隙因子输运方程并不依赖于具体的湍流模型,因而提出了耦合S-A湍流模型和间歇因子输运方程的转捩流模拟方法.其主要思想是构造与间歇因子相关的两个耦合函数,分别作用到S-A模型的生成项和耗散项用以控制湍流的产生与发展,从而实现层流到湍流的数值转捩.结果表明:该方法中模型方程具有完全当地性的特点,易于实施,可直接用以求解三维转捩流动.4个典型算例表明该方法模拟结果与γ-Reθt模型准确度相当,但少求解了两个输运方程,计算耗时减少了15%.   相似文献   

15.
杜钰锋  林俊  王勋年  熊能 《航空学报》2019,40(12):123067-123067
开展了可压缩流中湍流度测量技术的优化研究,以满足对试验数据高精度评估的需求。在变热线过热比湍流度测量方法推导过程中,忽略了压力脉动项以简化湍流度求解过程。为更加准确评估高速风洞流场湍流度,引入了压力脉动项,以恒温热线风速仪响应关系式为基础,从理论上对可压缩流中湍流度的求解方法进行了优化。在马赫数0.3~0.7进行了湍流度测量试验,并分别利用优化前后的湍流度求解方法对试验数据进行了处理。结果表明两种求解方法所得的湍流度结果量值相近,但优化后的湍流度求解方法所得的湍流度结果随马赫数的变化趋势更加符合客观物理规律。利用蒙特卡洛模拟方法对湍流度的不确定度进行了求解,不确定度量值远小于湍流度量值,表明优化后的湍流度求解方法所得的湍流度结果基本能够代表真实值。试验结果证明了优化后湍流度测量方法的正确性及应用恒温热线风速仪对高速风洞流场湍流度进行测量的可行性。  相似文献   

16.
为解决切割叶轮后盖板平衡轴向力的方法会导致泵扬程和效率降低这一关键问题,提出了一种补偿叶轮后盖板切割量平衡轴向力的方法。采用在同一个叶轮上切割叶轮后盖板和补偿叶轮后盖板切割量的研究方案,开展了泵性能、叶顶间隙压力、前后泵腔及平衡腔液体压力的系统测量。试验研究表明:以原型叶轮在设计流量下的扬程、效率和轴向力为基准,相对切割率为3.81%、7.62%、11.43%时,泵的扬程分别下降了3.52%、6.41%、9.93%,效率分别下降了2.97%、4.59%、6.18%,轴向力分别降低了8.02%、20.57%、22.3%;而补偿叶轮后盖板切割量后,泵的扬程最大降幅仅为4.18%,效率最大降幅仅为2.7%,轴向力最大降幅达到了83.1%;相对于切割叶轮后盖板而言,补偿叶轮后盖板切割量可以使前泵腔压力升高而后泵腔压力降低。  相似文献   

17.
轴对称矢量喷管内流特性的不同湍流模型计算   总被引:7,自引:1,他引:7       下载免费PDF全文
罗静  王强  额日其太 《推进技术》2003,24(4):326-329,340
利用二阶迎风格式,在采用三种不同湍流模型分别对轴对称矢量喷管三维内流场进行对比计算后,S-A-方程模型成为文中数值模拟中最有效的湍流模型,并将此模型计算的结果与模型试验结果进行了分析比较。研究结果表明,在矢量状态下,计算结果和试验结果相比,气动矢量角的相对误差不大于6%,流量系数的相对误差不大于l%,推力系数的相对误差不大于l%,所开发的计算方法可用于轴对称矢量喷管的工程设计。  相似文献   

18.
高比转速斜流叶轮流场分析   总被引:2,自引:2,他引:0  
以两个高负荷、高比转速离心叶轮与斜流叶轮为例,采用数值模拟的方法,在级环境下分析了两种叶轮的总体性能,以及内部流动机理.计算结果表明在高比转速情况下,斜流叶轮有利于减弱叶尖泄漏损失,改善叶轮出口均匀性,提高叶轮效率和级效率.   相似文献   

19.
叶片数对微型斜流叶轮性能的影响   总被引:1,自引:1,他引:0  
采用计算流体力学软件NAPA对叶片数不同的跨声微型斜流叶轮流场、性能进行了模拟,研究表明随着叶片数的增加,叶片载荷减小,叶背分离减小,叶片通道内流动改善,但叶片进口低压区域占叶片通道的比例增大,当叶片数增加到一定程度时主叶片不能全程加载.随叶片数的增加叶轮工作特性曲线左移的同时先上移后下移,通过与常规离心压气机最佳叶片数研究结果的对比表明,低雷诺数、微尺度效应及叶片占通道比例大使所研究微型斜流压气机的最佳叶片数略低于已有经验.   相似文献   

20.
叶轮流速系数对泵正反转性能参数比的影响   总被引:1,自引:1,他引:0  
为研究叶轮流速系数对离心泵反转作液力透平(PAT)泵工况和透平工况水力性能参数比的影响,采用renormalization group(RNG) k-ε湍流模型,通过计算流体动力学软件CFX计算了比转速为23~225的20个PAT叶轮单流道模型的流速系数,揭示了泵工况和透平工况流速系数的分布规律,建立了考虑流速系数的PAT泵工况与透平工况扬程比和流量比。结果表明:PAT透平工况叶轮流速系数大于泵工况。通过对不同比转速的6台工业PAT的外特性实验表明:与Stepanoff等提出的方法相比,考虑流速系数时PAT水力性能参数比与实验结果最为接近,其扬程比平均误差为5.38%,流量比平均误差为5.16%。该成果为PAT的选型设计和性能预测提供理论支撑。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号