共查询到20条相似文献,搜索用时 46 毫秒
1.
全流道的进气道/风扇一体化计算虽然能捕捉到全面、完整的流场细节,但仍然需要消耗大量的计算资源。为了节约计算成本,利用有限的设备达到快速高精度计算的目的,采用自行发展的块体积力模型替代真实叶片进行一体化计算。该模型将叶片流域沿周向等距分成若干块,每个块的体积力源项关联于叶片前缘参数。研究结果表明:该体积力模型能够准确地模拟出流场特征与细节。在均匀来流下,各参数的相对误差在0.5%以内。同时,在大S弯进气道高畸变来流条件下,与冻结转子方法计算结果相比,总压比、总温比和等熵效率的相对误差分别为4.49%,0.26%和2.38%。 相似文献
2.
亚声速无人机S弯进气道的多点多目标优化设计 总被引:1,自引:0,他引:1
为提高亚声速无隔道式S弯进气道的整体气动性能,本文以提高总压恢复系数和降低畸变指数为设计目标,结合高精度数值模拟方法与第二代非劣排序遗传算法(NSGA-II),开展了无隔道式S弯进气道在马赫数0.25和0.7时的多目标优化设计。整个优化流程基于400个样本,最终得到四幅有效Pareto前沿图。从总压畸变Pareto前沿图中选取出优化算例并与原始进气道进行对比,结果表明:优化后的进气道中心线斜率入口段小、出口段大,而横截面面积分布的曲线斜率恰好相反;优化后的进气道低压区缩小、流动分离得到有效的控制;虽然总压恢复系数提高有限,但是总压畸变得到大幅降低,在马赫数为0.25和0.7时,分别降低15.86%和23.61%。优化后的进气道在马赫数0.25~0.7范围内的整体性能得到有效改善。本文把优化设计方法进一步推广应用于3个马赫数下的多点多目标优化设计,并得到了三维Pareto前沿图。 相似文献
3.
半埋入式S弯进气道设计及其优化 总被引:2,自引:3,他引:2
为了减小大量附面层(δ=20%入口截面高度)吸入的半埋入式S弯进气道出口畸变,在完成其设计的基础上,以ISIGHT优化软件为平台,应用非支配排序遗传算法对其扩压器部分进行优化,并将优化前后结果进行对比。结果表明:优化后,进气道总压恢复系数略有提高,旋流畸变改善最为明显,降低约49.31%;几何结构相对原型改变较大,中心线趋于前后缓急相当,截面面积开始缓慢递增,靠近出口时急剧增加,呈现出\"后发力\"的特点;不同马赫数下,优化后进气道出口截面总压恢复、周向总压畸变、旋流畸变都有所改善,但优化前后各参数随马赫数的变化趋势不尽相同。 相似文献
4.
为了提高某大量附面层吸入的半埋入S弯进气道气动性能,采用数值模拟方法对其进行吹气控制研究并详细分析了吹气控制机理及吹气位置、吹气量、吹气角度变化对控制效果的影响.结果表明:吹气位置变化显著影响控制效果,最佳吹气位置位于气流分离点稍前的第1弯附近,该位置吹气比为1.75%、吹气角度为20°吹气时总压恢复系数相对原型提高约0.56%,出口周向总压畸变系数和旋流畸变系数分别下降约43.14%和83.60%;吹气角度并非越大越好,吹气时需尽量满足吹气角度较小,保证吹出的气流始终位于附面层内,避免与主流掺混而造成损失;总压恢复、出口周向总压畸变以及旋流畸变三者随吹气量变化的趋势不同,吹气量越大进气道总压恢复及总压畸变改善越明显,而旋流畸变随吹气量的增加先快速下降,随后变缓,最终甚至出现增加的趋势. 相似文献
5.
当前推进系统与飞行器正朝着高度融合的方向发展,超紧凑蛇形进气道和边界层吸入式进气道则是实现两者融合的关键之一。本文综述了近十余年来国内外关于这两类亚声速S弯进气道的最新研究进展。受显著横向压力梯度、流向逆压梯度的作用,两类进气道内部均存在明显的流动分离,并诱发了大尺度的流向对涡和显著的出口总压畸变。为此,研究者发展了被动式、主动式、混合式等多种流动控制方法,可在不显著降低总压恢复系数的前提下,大幅降低设计工况时出口周向总压畸变。并且,已经建立可适应任意异形进口的S弯进气道气动型面通用设计方法。最后,已有的CFD方法可以较为准确地预测AIP截面平均总压恢复系数,但畸变指数偏差较大。 相似文献
6.
用Jameson的有限体积法,对某型号飞机在不同飞行状态下的进气道流场进行了数值模拟。求解的控制方程为三维非定常N-S方程。在对流项的计算上用二阶中心差分有限体积法,粘性项的计算则采用作者在[1]中发表的一种有限体积框架下的新的离散化技术,时间方向用多步Runge-Kutta方法进行推进,以增大CFL条件数。湍流模型则采用Baldwin-Lomax代数模型。求解过程中还采用了当地时间步长,隐式残量平均、人工粘性等加速收敛技巧。最后给出了各种飞行状态下进气逼出口截面的平均总压恢复与总压畸变,得出了比较满意的结果。 相似文献
7.
某 Bump 进气道流动控制计算研究 总被引:4,自引:0,他引:4
以某 Bump(凸包)进气道为研究对象,采用 CFD 数值模拟技术对其内、外流场进行计算,重点研究超声速来流马赫数 M∞=1.60下进气道气动、流场特性;根据进气道内、外流场特点,分别设计机身棱线涡扰流片、进气道抽吸及射流流动控制装置,目的在于提高飞机 M∞=1.60来流、进/发匹配点条件下进气道总压恢复、降低出口流场畸变;采用 CFD 技术对各流动控制装置效能进行计算,基于计算结果,对各流动控制装置效能及典型装置流动控制机理进行了分析。研究表明,M∞=1.60来流、负迎角下,扰流片作用不明显;采用进气道抽吸或射流控制措施,对提高进气道总压恢复有效。研究结果可为类似 F-35那样的隐身战机 Bump 进气道流动控制或工程发展提供一定的技术参考。 相似文献
8.
为了明晰S弯喷管的流固耦合特性,数值模拟了流固耦合作用下双S弯收敛喷管的结构变形特征及其内/外流特性。结果表明:S弯喷管的圆转方弯曲构型产生了非均匀的流场分布,并增强了结构的弹性特征,它们通过交换气动载荷与变形位移数据形成了S弯喷管流固耦合的作用机理。在气动载荷作用下,S弯喷管沿Y向的最大变形位移为25.3mm,它位于喷管出口上壁面的中心位置。当喷管的结构变形稳定时,第二弯转弯处下壁面的气流加速至局部超音速,壁面静压大幅降低;第一弯下游上壁面附近形成了气流分离区;喷管出口喷流沿轴向向上偏转。流固耦合作用导致S弯喷管的流量系数减小0.6%,推力系数降低1.8%。矩形截面与弯曲构型是影响S弯喷管流固耦合特性的主要几何特征,其中矩形截面能够显著增大喷管的变形位移;S形弯曲构型虽然能够有效抑制变形特征,但它导致喷管多个区域出现变形,喷管的结构变形分布变得更加复杂。 相似文献
9.
为了优化亚声速无人机进气道的性能,完成了1种背部S弯进气道设计。通过合理控制中心线形状和截面积变化率完成了内型面设计,利用内、外流场耦合仿真得到了该进气道的最佳工作点和速度、迎角、侧滑角特性。数值仿真结果表明:总压恢复系数达到0.97以上。利用试制的玻璃纤维进气道与发动机进行了地面静止吸气状态下的匹配试验,试验结果表明:在地面静止吸气状态下发动机稳定工作裕度和熄火特性均满足设计要求,推力损失小于0.032。 相似文献
10.
前机身/进气道攻角特性的数值与试验研究 总被引:1,自引:0,他引:1
为研究前机身/进气道内外流场的攻角特性,对其一体化模型进行综合求解。将数值计算结果与试验数据进行对比以验证数值方法。分析了不同攻角下前机身对进气道入口气流的影响以及进气道内部流动情况,同时分析了攻角对进气道总压恢复系数和出口总压畸变指数的影响。结果表明:进气道位于机身下侧的布局能在大攻角下降低进气道入口的迎角和马赫数,有效提高飞行极限;在超声来流下,进气道在很宽泛的攻角范围内总压恢复系数都能达到0.94左右,在9°到18°攻角范围内具有较低水平的总压畸变,在此攻角范围之外,总压畸变对攻角的变化很敏感。 相似文献
11.
12.
采用全周非定常数值模拟方法,对两种畸变进口条件下的超声速压气机流场进行求解,了解动叶流场参数变化和气动性能与畸变来流条件的关系,重点分析动叶根部和顶部附近激波位置、结构和强度的变化情况,揭示动叶流场参数的动态变化规律.研究表明,随畸变区范围增加,压气机质量流量和效率下降;动叶流场参数对畸变来流的动态响应主要表现为激波位置、结构和强度的周期变化,当畸变区范围足够大时,流道在畸变区中会经历深度畸变;27.2%畸变时,畸变区内流道存在根部和顶部流动状态不一致的时刻,流场状态复杂.38.2%畸变时,畸变区内动叶叶顶和叶根区域都能达到深度畸变状态,流动损失较大且稳定性差. 相似文献
13.
15.
随着计算机技术和计算方法的迅速发展,三维非定常方法已经被直接用来求解非均匀进口条件下的压气机流场.但是考虑到网格数量和计算周期等因素,计算往往以压气机前作为进口,对进口畸变形式进行简化.然而这种简化与实际压气机进口非均匀特性存在一定出入,降低了数值模拟的准确性.为了尽可能真实地反映进口畸变形式,同时又不增加计算域的网格数,针对插板式畸变发生器制造的非均匀流场结构开展数值研究,分析了插板后不同位置的流场结构和畸变度,并研究了压气机前总压分布随插板深度和来流总压的变化规律,进而给出了压气机前总压分布形式的规律性描述. 相似文献
16.
17.
18.
进气畸变对发动机稳定性影响的分析模型 总被引:2,自引:1,他引:2
1引言目前,关于进气畸变对风扇/压气机性能和稳定性影响的模型有:平行压气机模型[1],级叠加模型[2],激盘模型[3],彻体力模型[4,5]和三维CFD计算等。但对于全台发动机来说,已有的计算模型都是采用平行压气机理论,而且认为压气机出口畸变完全衰减。基于这种理论,建立的发动机分析 相似文献
19.
为研究不同旋流强度的整体涡旋流畸变对跨声速压气机的影响,本文采用定常数值仿真的方法,基于一种整体涡旋流畸变发生器与Stage67跨声速压气机展开联合仿真研究。通过改变旋流畸变发生器叶片角度,可以模拟不同强度的整体涡旋流畸变流场,在不同旋流进气工况下得到了压气机的压比、效率特性曲线,并针对流场细节进行分析,研究其失速机理。结果表明:同向整体涡有效降低近失速点叶顶通道堵塞程度,使叶片流动损失减小,压气机稳定裕度扩大;反向整体涡加剧叶背气流流动分离程度,引起吸力面尾部低速区面积扩大,导致叶顶堵塞程度的显著加剧,通道流动损失增加明显,造成压气机稳定裕度下降。 相似文献