首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
不同来流条件对涡轮叶片表面颗粒沉积影响的实验研究   总被引:3,自引:0,他引:3  
为了研究微颗粒在涡轮叶片表面的沉积特性,采用熔融态石蜡代替熔融态微颗粒,通过石蜡在平板表面的沉积来模拟真实涡轮叶片表面的微颗粒沉积,从而开展较低温度条件下微颗粒的沉积实验。通过实验观察石蜡在试验件表面附着固化分布,同时测量石蜡在平板表面不同位置的沉积量,研究了不同来流攻角、颗粒浓度对平板表面颗粒物沉积的影响规律,分析了等效加速实验的颗粒物沉积效果。结果表明:颗粒物沉积主要发生在平板前缘及压力面的中后部,前缘的颗粒沉积物质量远大于压力面和吸力面的。随着攻角的增大,压力面和吸力面沉积量显著增大,前缘变化不明显;随着来流颗粒浓度的增加,前缘和压力面的沉积量增加;对于已有等效加速实验准则,保持总粒子喷射质量相同,在颗粒浓度升高,实验时间变短的情况下,平板前缘位置的沉积量增大。  相似文献   

2.
气膜冷却平板表面颗粒物沉积的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
杨晓军  崔莫含  刘智刚 《推进技术》2018,39(6):1323-1330
为了解涡轮叶片表面颗粒物的沉积规律和沉积对气膜冷却的影响,实验通过石蜡喷涂装置将熔融石蜡颗粒喷入到小型风洞中,石蜡颗粒沉积在具有气膜冷却的平板表面上来模拟涡轮叶片上的颗粒物沉积过程。实验中将表征石蜡熔融颗粒尺寸的斯托克斯数与实际燃气涡轮发动机中的煤灰颗粒相匹配,通过调节主流温度,保持石蜡颗粒在沉积前处于熔融状态来模拟真实涡轮叶片上颗粒物的粘附机理,观察没有气膜冷却情况下的石蜡沉积过程和有气膜冷却情况下,不同吹风比和不同射流角度对石蜡沉积的影响,以及石蜡沉积后对平板表面气膜冷却的影响。研究发现石蜡熔融温度与主流温度相接近时,更容易沉积在平板表面,并且石蜡沉积在生长到一定厚度后不再增长。在有气膜冷却的情况下,吹风比从0增加到1.5时,平板表面石蜡沉积先减少后增加,吹风比为0.5时,石蜡沉积最少。射流角度由30°增加到90°时,平板表面石蜡沉积逐渐增多。石蜡沉积降低了平板气膜冷却效率,并且气膜孔间下游区域的温度比气膜孔下游区域更高。  相似文献   

3.
攻角对涡轮叶片表面流动及换热的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
樊剑博  朱惠人  刘聪  李红才 《推进技术》2014,35(10):1372-1377
利用短周期跨声速换热风洞测量非设计状态下攻角对涡轮叶片表面静压及换热的影响,研究攻角对涡轮叶栅压力分布及换热系数分布的影响规律。实验结果表明,攻角变化对吸力面压力分布影响较大,正攻角时在靠近吸力面前缘处产生很大的逆压梯度,随攻角增大吸力面后部压力逐渐增高,负攻角时压力面前缘产生较小的逆压梯度;正攻角主要影响吸力面换热系数,随攻角增大吸力面前缘局部区域换热显著加强,负攻角主要影响压力面换热分布,随攻角减小压力面换热加强,大雷诺数下换热系数分布规律与小雷诺数时基本一致。  相似文献   

4.
针对微细颗粒在涡轮叶片表面的沉积问题,采用EI-Batsh沉积模型对涡轮叶片表面微细颗粒沉积情况进行数值仿真,探究压力面冷却射流对颗粒沉积特性的影响.研究表明:沉积主要发生于叶片前缘与压力面,且沉积率随着粒径的增大不断增大,但粒径增大到17 μm后沉积率增加幅度开始变小.存在冷却射流时,射流可以通过吹离和卷吸作用影响小...  相似文献   

5.
旋转对弯扭涡轮叶片前缘气膜冷却的影响   总被引:1,自引:0,他引:1  
基于热色液晶(TLC)测温技术,开展了转速(攻角)和吹风比对弯扭涡轮叶片前缘区域气膜冷却效率分布影响的实验研究。实验中涡轮转速分别为400 r/min(正攻角)、550 r/min(零攻角)和700 r/min(负攻角),平均吹风比为0.5~1.25。冷却工质采用氮气,对应的射流-主流密度比为1.04。基于涡轮动叶弦长的涡轮出口主流雷诺数为60 800。实验结果表明:转速是决定涡轮叶片前缘气膜冷却效率分布最重要的参数之一。随着转速的增大,滞止线的位置会从压力侧(PS)移动到吸力侧(SS)。当吹风比相同时,面平均气膜冷却效率随转速的增大而逐渐增大;当转速相同时,面平均气膜冷却效率随吹风比的增大而增大。   相似文献   

6.
基于PSP技术的压气机跨声叶栅表面压力场测量   总被引:1,自引:0,他引:1  
为测量压气机跨声叶栅表面压力场,选择美国ISSI公司的Binary FIB PSP(压敏涂料),并根据涂料和跨声叶栅合理搭配相机和光源系统,对涂料进行标定。设计了两种不同的光路布局和拍照方案,获取了吸力面与压力面在多个攻角和马赫数下的试验数据。结果表明:对于压气机叶栅试验,打光和相机采取侧向布局效果更好。在0°攻角下,吸力面的吸力峰靠近前缘;随着攻角的变大,吸力面气流在靠近前缘很短距离完成加速和静压下降过程,然后沿弦长方向开始减速,压力面气流在叶片前缘附近很短距离内完成减速增压过程。当马赫数达到0.8时,叶栅通道出现了激波;随着进口马赫数的提高,叶片吸力面和压力面表面的静压值变小。  相似文献   

7.
涡轮叶栅通道内颗粒物沉积过程的数值模拟   总被引:1,自引:0,他引:1  
为了更加准确获得颗粒物在涡轮中的沉积分布,以某涡轮叶片为模型,选用最接近航空发动机内部颗粒组成的Jim Bridger Power Station(JBPS)颗粒为污染物,同时,利用C++编写合适的User Defined Function(UDF)经过调试来分析颗粒沉积后叶片边界的复杂变形和边界网格依赖于时间变化的重构生成,在考虑每个时间步长颗粒沉积在叶片上从而改变叶片几何特性和换热特性的情况下,来深入研究颗粒物沉积在叶片的整个过程,最终得出了沉积的分布情况,并且通过数值研究结果与实验结果的对比,验证了网格重构与融合程序的合理性、准确性。根据叶片变形情况预测腐蚀的发生情况。随后,改变主流温度、颗粒直径来研究颗粒沉积特性。结果表明:颗粒主要沉积在叶片压力面中部,但会使得叶片前缘和压力面中部均产生明显变形;叶片前缘由于颗粒沉积使得粗糙度增加形成锯齿形,最先遭受腐蚀;颗粒直径影响颗粒沉积的分布与沉积生长速度;只影响沉积速度,并不改变沉积分布。  相似文献   

8.
为了更加准确地模拟涡轮叶片表面颗粒物沉积的增长过程和分布状况,研究颗粒物沉积过程中粘附、剥离直至稳定平衡的规律,在经改进的颗粒粘附模型基础上考虑两种剥离形式,利用Fluent的User Defined Function (UDF)功能和网格重构技术,最终实现了熔融石蜡颗粒于带有气膜冷却的平板上沉积动态增长的过程。通过与相同条件下所得实验结果的对比,验证了所用模型的有效性和合理性。随后研究了是否加入剥离模型、气膜冷却吹风比、气膜孔射流角度等因素对沉积效果的影响。计算结果表明,考虑颗粒的剥离效应将减少颗粒物沉积的总量,尤其是在气膜孔后较短区域内;此外,吹风比的增加将使颗粒不易撞击壁面,已粘附的颗粒也更容易剥离从而降低沉积的厚度和质量;射流角度不断增大则使气膜覆盖效果变差,壁面温度升高,颗粒更易达到熔融状态沉积下来。研究发现该数值方法有助于更加精确地仿真沉积增长的过程,证实了吹风比和射流角度对沉积的分布和厚度有很大影响。当射流角度处于35°~40°时,可在一定程度上减少沉积。  相似文献   

9.
亚声速涡轮导叶全气膜冷却特性实验研究   总被引:1,自引:2,他引:1       下载免费PDF全文
为了获得亚声速涡轮导叶的全气膜冷却特性,在短周期高速风洞中对全气膜覆盖涡轮导叶实验件进行了实验,获得了涡轮叶片表面在不同主流雷诺数(Re=3.0×10~5~9.0×10~5)、二次流质量流量比(MFR=5.5%~12.5%)和主流湍流度(Tu=1.3%,14.7%)下的气膜冷却效率分布。实验叶片前缘有5排复合角度圆柱形气膜孔形成前缘喷淋冷却结构,压力面和吸力面分别有6排和3排圆柱形气膜孔。结果表明:在本文研究的质量流量比范围内,涡轮叶片压力面和吸力面的气膜冷却效率随着质量流量比的增大而减小,而前缘区域的冷却效率随质量流量比的增大而增大;雷诺数的变化主要影响叶片压力面相对弧长S/Smax-0.6区域的冷却效率分布,在高雷诺数(Re=9.0×10~5)下,大质量流量比的冷却效率最高,而在中低雷诺数(Re=3.0×105,6.4×105)下,小质量流量比的冷却效率最高;叶片前缘气膜冷却效率受主流湍流度升高的影响较小,而在压力面和吸力面冷却效率均随着湍流度的升高而降低。  相似文献   

10.
亚声叶型前缘形状对压气机气动性能的影响   总被引:1,自引:0,他引:1  
数值研究了四种亚声叶型前缘(平钝前缘,尖锐前缘,偏压力面前缘和偏吸力面前缘)形状偏差对压气机气动性能的影响。结果表明:四种偏差叶型的最小损失系数与原型相近,平钝前缘在叶根处的低损失攻角范围最小(降低了21.02%);偏压力面和偏吸力面前缘的角度范围与原型接近,但偏压力面前缘的负攻角范围减小,偏吸力面前缘的正攻角范围减小;尖锐前缘低损失攻角范围与原型相近。前缘形状偏差影响堵塞流量,偏压力面前缘堵塞流量降低最多(降低了0.80%);尖锐前缘和偏压力面前缘喘点压比与原型相近,平钝前缘和偏吸力面前缘喘点压比略低,各方案最高效率值相近;平钝前缘偏差对前缘马赫数分布影响最大,前缘形状偏差对进、出口相对气流角和叶片D因子影响不大。试验中应避免使用平钝前缘偏差叶型,或同一排叶片安装偏压力面与偏吸力面前缘偏差叶片。  相似文献   

11.
Characteristics of particle migration and deposition were numerically investigated in presence of aggressive swirl at the turbine inlet. The isolated effects of the inlet swirl were considered in detail by shifting the circumferential position of the swirl and by implementing positive and negative swirling directions. Particles were released from the turbine inlet and the resulting deposition on the vanes was determined by using the critical velocity model in a range of particle diameters from 1...  相似文献   

12.
为了探究船舶燃气轮机内部冷却通道的颗粒沉积特性,本研究从随压气机抽取的气体进入冷却涡轮内部冷却通道内的颗粒动力学特性及颗粒与壁面相互作用特性出发,基于高温壁面建立速度场影响的沉积模型,利用用户自定义函数实现沉积模型与CFD程序的嵌套。并简化船舶燃气轮机内部冷却通道,选取了在气膜孔与壁面之间夹角β=90°时,下游肋倾角α不同(α=30°,45°,60°,75°,90°),及在下游肋倾角α=60°时,气膜孔与壁面之间夹角β不同(β=30°,45°,60°,75°,90°)的八种不同内冷结构进行数值计算。研究表明,在气膜孔与壁面之间夹角β=90°不变时,随着下游肋倾角由α=90°减到α=30°时,弯头壁面换热性能和沉积率逐渐呈下降趋势,下游肋与肋之间壁面上颗粒的撞击率逐渐上升。下游肋倾角α=60°,气膜孔与壁面之间夹角β=45°的U型肋通道,在八个内冷结构中弯头壁面沉积率最少,换热性能最好,是能够有效改善船舶燃气轮机冷却涡轮的海洋环境工作适应性,减少内部冷却通道中颗粒沉积的内冷结构。  相似文献   

13.
游学磊  姜玉廷  岳国强  季杰  张立楠 《推进技术》2020,41(11):2490-2498
为了探究典型舰船燃气轮机高压涡轮叶栅通道内部的颗粒沉积分布规律,论文以分析随燃气进入涡轮叶栅通道内的颗粒的动力学及颗粒与壁面相互作用的特性为出发点,探究颗粒与涡轮叶片表面撞击后发生黏附与剥离以及沉积与反弹的相互作用准则,在此基础上构建相应的颗粒壁面沉积模型,采用数值模拟方法,建立气-固两相流无量纲方程组,嵌入UDF用户自定义函数,并比较分析临界速度模型和临界黏度模型对于模拟颗粒沉积分布的异同。结果表明,在本文工况条件下,对于临界速度模型而言,叶片表面和下端壁处的颗粒沉积效率都在动量Stokes数增大到约0.1时开始从100%减小,在动量Stokes数增加到约10后减小到0;上端壁处的颗粒沉积效率在动量Stokes数增加到约1时开始从100%减小,在动量Stokes数增大到约100后减小到0。而对于临界黏度模型而言,叶片表面和下端壁处的颗粒沉积效率随着动量Stokes数的增大而不断增大,二者都在动量Stokes数约为1时达到100%,而上端壁处的沉积效率却先增大后减小,最后再增大,在动量Stokes数约为0.1颗粒沉积效率降低到最小值约为80%,后开始增加到100%。  相似文献   

14.
赵宏杰  姜玉廷  杜磊  房一博  郑群 《推进技术》2020,41(11):2499-2508
为了探究船舶燃气轮机冷却涡轮叶片内部冷却通道内肋片角度的改变对颗粒沉积特性的影响,以7种不同肋片角度及1种弯头处加导流片的肋结构作为研究对象,运用CFD数值模拟对比分析各种冷却结构的流动换热性能以及颗粒沉积特性。结果表明:当肋片角度改变时,内部通道的流动换热和弯头壁面的沉积率存在很大差异。肋片角度为45°的内部冷却通道的换热性能相比于换热性能最差的E型肋的平均努塞尔数高了25%;肋片角度为60°时,弯头壁面和弯头后壁面的沉积率最低;肋片角度为90°时沉积率最高;肋片角度为135°时换热性能最差,弯头壁面沉积率最低。肋片角度的改变对弯头侧壁的沉积率和各个部分的撞击率无显著影响,但是增加导流片可以有效降低弯头壁面的捕获率和沉积率以及弯头侧壁的沉积率、撞击率和捕获率。  相似文献   

15.
粒子滤波通过蒙特卡罗模拟来实现递推贝叶斯估计,在非线性非高斯系统中体现出良好的特性;但粒子滤波存在粒子退化现象的缺陷,针对这一问题,提出一种新的重采样算法,即分区重采样算法,其主要思想是根据多项式重采样与分层重采样算法的特点,把随机数区间划分成若干个区,每个区内的随机数任意排列,而区与区之间按升序排列。与目前常用的其他重采样算法相比,该方法提高了粒子滤波的平均性能,仿真实验验证了该算法的有效性和实用性。  相似文献   

16.
高密度烃燃料雾化特性试验   总被引:1,自引:7,他引:1  
采用试验手段研究了高密度烃燃料在直射式喷嘴情况下的雾化规律,采用数字图像处理技术,使用粒子图像测速系统(PIV)对其在横向高温气流中形成的喷雾场进行图像测量和分析。初步研究了气流温度、油压、气压与气流速度对高密度烃燃料雾化特性的影响,以及射流与喷嘴距离对喷雾粒子索太尔平均直径(SMD)的影响。试验结果显示:气流温度和油压的增加有助于提高高密度烃的雾化效果。在研究气流速度对其影响时,要考虑加热气流蒸发产生的影响,在雾化初始阶段速度因素占主导地位,而在下游距离喷嘴50~75mm间的某一位置开始,蒸发因素将起到主要作用。通过数值计算与实验比较,进一步说明了高温气流蒸发作用在颗粒二次雾化中的重要性。研究结果为优化设计高密度烃燃料发动机燃烧室提供依据。  相似文献   

17.
惯性导航系统凭借其自主性强、隐蔽性好、可靠性高的优势,在单兵作战、反恐救援中发挥越来越重要的作用。针对单兵惯性导航系统精度较低,在长期工作后精度下降严重,需要重新初始化的问题,以单兵与无人平台的协同作业为背景,提出了一种基于移动式辅助节点的单兵导航系统协同快速初始化方法。该方法以目标节点的角增量、位移增量信息与测距信息作为输入,采用粒子滤波技术对单兵导航系统的位置和航向进行协同估计。试验表明,该算法最少仅需1个辅助节点即可实现较好的单兵惯导系统位置和航向初始化。  相似文献   

18.
This paper is devoted to the problem of particle acceleration in the closest to the Sun Hermean magnetosphere. We discuss few available observations of energetic particles in Mercury environment made by Mariner-10 in 1974–1975 during Mercury flyby’s and by Helios in 1979 upstream of the Hermean bow shock. Typically ions are non-adiabatic in a very dynamic and compact Mercury magnetosphere, so one may expect that particle acceleration will be very effective. However, it works perfectly for electrons, but for ions the scale of magnetosphere is so small that it allows their acceleration only up to 100 keV. We present comparative analysis of the efficiency of various acceleration mechanisms (inductive acceleration, acceleration by the centrifugal impulse force, stochastic acceleration in a turbulent magnetic fields, wave–particle interactions and bow shock energization) in the magnetospheres of the Earth and Mercury. Finally we discuss several points which need to be addressed in a future Hermean missions.  相似文献   

19.
固体火箭发动机燃烧室中的颗粒轨迹   总被引:6,自引:2,他引:6       下载免费PDF全文
何洪庆  周旭 《推进技术》1999,20(5):25-29
用气相与颗粒场耦合的轨迹模型法计算了固体火箭发动机燃烧室两相流中的颗粒运动轨迹。结果表明: 颗粒轨迹受颗粒尺寸大小、颗粒初始速度的大小和方向以及气相运动特性等影响。燃烧室中的两相流动是一种非常滞后的非平衡流动。颗粒尺寸越大, 惯性越大, 随流性越差。尺寸相差较大的颗粒可能有完全不同的轨迹。在一定条件下,颗粒会穿过通道的中心线,甚至打到对面壁上并反弹。颗粒会受气相旋涡的影响, 甚至有可能卷入旋涡  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号