共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
针对双级高压气冷涡轮的低温试验状态模化方法,对以空气为工质、基于不同相似准则数的试验模化状态的流场相似性进行数值仿真。结果表明:对于有冷气试验模化方法,采用出口马赫数与设计状态一致的模化方法可获得相似性较好的试验状态流场,此时反力度、载荷系数、马赫数均能保证良好的相似性,主要相似准则数偏差不超过5%;对于无冷气试验模化方法,保持涡轮几何不变并增大膨胀比使得等熵速比与设计状态的一致,或通过改变叶片数保证各排出口马赫数与设计状态的一致,均能显著改善无冷气模化状态与设计状态的流场相似性。其中前者反力度相似性接近98%,而后者载荷系数和马赫数的相似性达到了同样水平,但破坏了模型的几何相似。 相似文献
4.
5.
《燃气涡轮试验与研究》2014,(4):18-21
采用中温模拟级性能试验器,试验研究了高反力度涡轮转子叶尖间隙对涡轮级性能的影响,获得了转子叶尖间隙对涡轮级性能的影响规律。通过对试验方案进行数值计算分析,并与试验结果进行对比,验证了数值计算分析方法的合理性。研究结果表明,当涡轮级反力度较高时,随着相对叶尖间隙的减小,其对涡轮性能的影响越来越明显;转子叶尖间隙变化对导向器喉部流通能力也会产生一定影响。 相似文献
6.
为提高凹槽状叶顶气热性能,探究肋条布局对凹槽状叶顶间隙腔室内旋涡的调控作用和降低传热系数与气动损失的作用机制,采用数值求解三维Reynolds-Averaged Navier-Stokes (RANS)方程和k-ω湍流模型的方法研究了肋条布局对涡轮动叶凹槽状叶顶传热和气动性能的影响。基于GE-E~3涡轮级动叶凹槽状叶顶结构,在叶顶凹槽腔室内沿中弧线等间距设计了全肋条布局、吸力侧半肋条布局、压力侧半肋条结构和凹槽尾缘半肋条结构共4种肋条布局。数值模拟动叶叶顶传热系数分布与实验数据对比,验证了所采用的数值方法和湍流模型的有效性。结果表明:凹槽尾缘半肋条布局的叶顶平均传热系数比凹槽状叶顶结构、全肋条布局、吸力侧半肋条和压力侧半肋条布局分别低了11.3%,3.1%,11.3%和2.8%;压力侧半肋条布局与凹槽尾缘半肋条布局的动叶出口截面总压损失系数相近,比凹槽状叶顶结构、全肋条布局和吸力侧半肋条布局分别减小了1.4%,2.7%和4.0%。肋条布局能够有效降低凹槽状叶顶间隙腔室内的旋涡强度,减少叶片的气动损失;同时上游凹槽腔室强度较弱的旋涡通过凹槽尾缘半肋条布局进入下游凹槽腔室,降低了尾缘区域的传热系数。凹槽尾缘半肋条布局的动叶叶顶具有最佳的气热性能。 相似文献
7.
为研究涡轮性能试验中探针对涡轮流场的影响,以低压涡轮级性能试验件为研究对象,采用CFD方法开展了探针对涡轮流场影响的数值模拟研究。结果表明,探针影响涡轮出口内、外壁静压最大偏差分别达2.3%和2.9%,涡轮出口气流角增大2.0°,涡轮效率降低0.9个百分点。数值模拟与试验结果吻合较好,说明探针对涡轮流场影响较大,分析流场和设计试验时需要考虑探针的影响。本研究为涡轮级性能试验中探针的布置、改进和完善提供了方向。 相似文献
8.
9.
采用计及质量源密度空间分布规律的冷气掺混模型,对某型高压涡轮动叶有/无冷气喷射时的气动性能进行了数值计算和对比分析。数值分析结果表明,该模型能够较准确地模拟出大流量冷气喷射对涡轮性能的影响。冷气喷射导致了马赫数的下降和气流角的变化,叶片表面和端壁处形成了低温保护层,且压力面附近温度降低较吸力面强烈。 相似文献
10.
尾迹对低压涡轮边界层稳定性的影响 总被引:1,自引:0,他引:1
在低压涡轮内部上游周期性扫过的尾迹是下游叶片排内最重要的非定常扰动源,会对边界层的失稳和转捩过程产生决定性的影响.在施加低压涡轮负荷分布的平板上,采用热线对雷诺数为130000工况下,有/无尾迹作用时分离剪切层中的速度波动进行了测量.通过对比两种工况下分离剪切层中的扰动发展,分析了尾迹对分离泡稳定性的影响.结果表明:在无尾迹来流工况下,扰动在分离泡前部的增长符合线性不稳定机制,扰动增长至饱和后非线性机制开始起作用.主导分离剪切层的失稳过程的为K-H(Kelvin-Helmholtz)无黏不稳定机制.尾迹与分离剪切层的相互作用产生的扰动的增长在分离泡前部同样满足线性不稳定机制.尾迹加速了分离剪切层的失稳转捩进程,从而抑制了分离. 相似文献
11.
大子午扩张涡轮由于子午型线扩张度较大,因而易导致端区边界层分离及热集中,针对这个现象,采用数值模拟方法,并采用正弦曲线对某型1.5级大子午扩张涡轮子午型线采取了8种修型方案,研究子午修型对于端区流动传热性能的影响。计算结果表明,子午修型可以有效地控制端区的分离流动,从而影响着通道涡与脱落涡强度及位置,也影响着端壁及叶片上热负荷分布。在本文研究条件下,振幅为三分之一叶片最大厚度的前凹后凸子午型线有效地减弱了脱落涡引起的损失,进而使整体总压损失减小6.06%,并可以减弱端壁及叶片传热集中,使叶片最大热负荷减轻21%。 相似文献
12.
为使高压涡轮导叶非轴对称端壁造型在减少二次流损失、提高气动性能方面更好的发挥作用,以某一级高压涡轮为研究对象,采用端壁参数化造型、三维Navier-Stokes(N-S)方程流场求解和基于人工神经网络的遗传算法相结合的优化方法对涡轮导叶进行非轴对称端壁的优化设计。优化目标为在控制涡轮导叶进口质量流量、出口马赫数及出口气流角的情况下,导叶出口总压损失系数和出口二次流动能最小化。对比分析优化前后端壁对涡轮导叶出口参数和涡轮级性能的影响。结果表明:优化后得到的非轴对称端壁有效地改善了涡轮导叶通道内的流场,抑制了通道内二次流涡系的发展,降低了导叶出口处的流动损失,涡轮导叶出口总压损失系数降低了14.85%,高压涡轮级等熵效率提高了0.456%。 相似文献
13.
14.
15.
为了评估可调向心涡轮导流叶片叶顶及叶根间隙尺寸不确定性对涡轮级性能的影响,首先将喷嘴环叶片大开度模型的单通道定常数值结果与实验数据对比;然后以导流叶片小开度涡轮为研究对象,数值模拟导叶两端叶顶间隙尺寸多种分配模型三维流场,总结出导叶间隙不确定性与涡轮级性能之间相应变化规律;最后选取导叶两端间隙平均分配模型和最优涡轮性能下间隙分配模型开展多通道定常/非定常计算,用于分析间隙分配变化对转静干涉影响。研究结果表明:当导流叶片轮缘侧间隙尺寸占全部间隙尺寸5%~15%范围时,涡轮级效率较高;当导叶间隙全部集中在轮缘侧时,涡轮效率较低;最高、最低效率差别约为6%。间隙泄漏流变化将引起下游转子叶片进口气流角发生变化,进而改变转子叶片吸力面前缘分离涡损失大小。此外,导叶两端间隙分配变化可以改变嘴环叶片吸力面激波强度,并通过诱发交变载荷变化方式影响转子叶片可靠性。 相似文献
16.
17.
18.
对涡轮叶栅端壁上游4种气膜冷却结构模型进行了数值模拟,得出在不同吹风比情况下涡轮叶栅端壁的流动与换热特性。结果表明,无槽气膜孔冷气射流在孔下游与主流相互作用形成1对转动方向相反的耦合涡,主流被卷入耦合涡并冲击到了端壁,使得孔间壁温接近主流温度,气膜冷却效率很低;带槽气膜孔抑制了耦合涡的形成,冷却了孔间端壁,气膜冷却效率较高,而且,随着槽深度的增加,冷气的展向(Y向)宽度逐渐增加,扩大了冷气覆盖区域,提高了端壁气膜冷却效率。 相似文献
19.
壁面湍流模型对湍流分离流动数值模拟的影响 总被引:7,自引:0,他引:7
本文用三种近壁湍流模型计算了二个二维的湍流分离流动:单包流动和多包流动。结果表明:二层模型和低Reynolds数模型具有类似的特性。它们基本上给出合理的分离流动结构。壁函数的方法由于对数律的假定基本上不适合于计算湍流的分离流动。 相似文献
20.
为了保护航空发动机涡轮盘,阻止高温燃气向盘腔内部深入,破坏核心部件,通常将压气机冷气引入转静盘腔,以抵抗高温燃气入侵,并对涡轮部件进行冷却。本文利用非稳态与稳态数值计算方法,研究了跨声速涡轮设计工况(Reφ>107)下的两种复合封严结构:静盘存在封严环的覆叠封严和动盘带封严齿的咬合封严结构,并与轴向封严结构进行对比。在本文所研究的范围内,对非稳态计算进行快速傅里叶变换(FFT)的结果表明:跨声速涡轮流动中,叶栅通道存在由激波引起的高压区,导致了燃气的剧烈入侵,因此在特征信号频谱中f/fblade=2处存在峰值,这是跨声速涡轮燃气入侵最显著的特点。稳态计算证明复合封严结构封严性能良好。静盘封严环将盘腔分割为上下两个容腔,入侵容腔滞留了绝大部高温燃气,因此高半径处封严效率较低,但盘腔低半径处封严效率明显提高,在Cw≈996时,两种复合封严结构在r/b=0.96以下都能达到很高的封严效率。咬合封严能够增加燃气流动阻力,有效减小封严冷气使用量。但是两种封严结构在当冷气流量系数从Cw=199逐渐增大到2000时,高半径处封严效率并没有明显的提高,封严效率仅提高了20%~30%。 相似文献