首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
针对商业火箭公司对于液态甲烷过冷加注的需求,开展了基于液氮冷源的甲烷过冷加注系统方案设计,并计算得到了不同甲烷流量和液氮压力参数下的过冷器换热面积。为了防止液氮温度过低造成液态甲烷凝结,参考现有液氧和煤油工艺流程,提出2种不同控制策略的甲烷过冷加注系统,并详细对比分析了这2种系统所能实现的6个不同工艺流程。结果表明:基于背压控制的加注系统相比于基于液位控制的系统具有更高可靠性,同时前者能够实现在线实时加注工艺,原因在于其通过控制换热器中液氮压力来保证液氮温度始终高于甲烷冰点。甲烷过冷器换热面积与甲烷加注流量、液氮背压均成正比,在具体工程实施中应当根据加注需要选取合适的加注流量和液氮背压,以减小过冷器尺寸和降低设备制造成本。  相似文献   

2.
张亮  林文胜  鲁雪生  顾安忠 《推进技术》2004,25(1):51-53,96
为了抑制火箭发动机中低温推进剂输送管路中产生的间歇泉现象,采用液氮为工质,进行了低温推进剂双管输送循环预冷模拟实验研究。研究了输送管壁不同绝热条件、贮箱增压及气体引射对自然循环预冷过程的影响。通过实验获得了循环管路的循环压差及管路温度分布。结果表明:管壁绝热条件相差越大,循环压差越大;贮箱压力增大,循环压差降低;气体引射的作用不大;双管输送循环预冷系统中的低温流体形成了自然循环,可以有效抑止低温推进剂输送管路中的间歇泉现象产生。  相似文献   

3.
低温液体推进剂充填管路的数值模拟   总被引:4,自引:2,他引:2  
研究了低温液体推进剂供应管路预冷充填过程的计算方法, 利用一维均相平衡态流体动力学模型和涵盖预冷过程中主要传热工况的传热模型, 考虑了低温液体推进剂的可压缩性, 用有限容积法求解管流方程, 用有限差分法求解管壁内的一维非稳态导热方程.计算了某型低温液体推进剂火箭发动机实验台系统供应管路的预冷充填过程, 分析比较了仿真与实验的结果, 为发动机和实验台系统的改进及新系统的设计提供了依据, 仿真结果及分析结论已应用于现有发动机实验台系统的改造和长距离液氢输送管道的设计中.   相似文献   

4.
针对低温液体火箭发动机预冷自然循环回路的流动与传热过程,建立了一维非稳态均相流数学模型,采用反环状流和弥散流两种流型描述膜态沸腾流型及传热特性。数值计算结果表明:自然循环预冷回路中推进剂流量的不稳定特性是由驱动力——循环回路释热量的不稳定性造成的;预冷过程约80%的管路壁面温度下降由膜态沸腾所引起;反环状流和弥散流膜态沸腾流型的引入,可较好解释回流管壁面温度在预冷过程中的逆向分布规律。  相似文献   

5.
为深入揭示液滴在真空环境下的闪蒸机理,建立了真空闪蒸全过程、非均温的传热传质数学模型,获得了各时刻液滴温度场及半径,并能够追踪结冰阶段的相变界面位置.通过开展液滴闪蒸的实验研究,观察了相变前后液滴的形态变化,并对数值模型进行了验证.基于数学模型,研究了液滴初始半径、初始温度、真空舱压力和结冰过冷度对闪蒸过程的影响规律.结果表明:真空舱压力是影响闪蒸过程的主要因素,且会影响最终平衡温度;初始半径主要影响预冷和冻结时间,而初始温度和结冰过冷度主要只影响预冷时间.   相似文献   

6.
液体火箭发动机自然循环预冷回路的数值研究   总被引:2,自引:0,他引:2  
针对低温液体火箭发动机预冷自然循环回路的流动与传热过程,建立了一维非稳态均相流数学模型,采用反环状流和弥散流两种流型描述膜态沸腾流型及传热特性.数值计算结果表明:自然循环预冷回路中推进剂流量的不稳定特性是由驱动力——循环回路释热量的不稳定性造成的;预冷过程约80%的管路壁面温度下降由膜态沸腾所引起;反环状流和弥散流膜态沸腾流型的引入,可较好解释回流管壁面温度在预冷过程中的逆向分布规律.   相似文献   

7.
低温推进剂单管输送系统的循环预冷实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用了外加循环支管方式抑制火箭发动机中低温推进剂输送管路中产生的间歇泉现象,对外加支管的低温推进剂单管输送循环预冷系统进行了数值模拟及实验研究。研究了在外加循环支管的管路结构下,增压对循环预冷过程的影响。实验结果表明:单管输送系统中采用外加循环支管的方式可以使整个管路形成循环,这种方法可以有效抑制低温推进剂输送管路中间歇泉现象的产生。  相似文献   

8.
为深入分析液氢/液氧发动机预冷特性,建立了一种基于AMESim的液氢自流预冷计算模型,开展了针对特定试验系统的仿真验证工作,获得了与试验数据较为一致的仿真结果,准确预示了预冷过程中预冷时间、预冷质量流量等关键参数,为低温运载火箭预冷研究提供了一种有效手段。  相似文献   

9.
王磊  厉彦忠  马原  徐孟健 《航空动力学报》2015,30(11):2794-2802
增大低温推进剂入轨时的过冷度可显著延长低温燃料在轨贮存期限.通过文献调研与理论分析,介绍了4种低温推进剂过冷度获取方案的工作过程与研究现状,分析了不同方案的优缺点,在此基础上提出了我国开展相关研究的思路.研究表明:①为了减小过冷度获取成本,应采用先加注后冷却的操作程序,且制冷系统尽可能靠近目标贮箱;②液氧、液态甲烷可通过液氮池沸腾提供过冷度;③氦气喷射预冷消耗氦气量巨大,建议仅针对小型液氢采用此技术;④热力学低温流体过冷器(TCS)技术具有总体质量轻、投入能量少等优点,在液氢过冷度获取方面具有可观的应用前景.可为我国开展低温推进剂过冷度相关研究提供参考.   相似文献   

10.
孙强  马原  高炎  高强  厉彦忠 《航空动力学报》2023,(12):2905-2911
从燃料密度、显冷量和贮箱增压压力等方面阐述了采用过冷液氧推进剂的性能优势。以获取66 K过冷液氧为目标,从低温工质消耗、功率消耗、系统复杂性和安全性等多个方面对液氧抽空减压、负压液氮浴换热和氦制冷循环3种过冷方案进行了定量与定性对比。针对液氮浴过冷技术进一步对比了单级与两级过冷方案,最终建议采用常压+负压两级液氮浴过冷方案获取66 K深度过冷液氧,并基于该方案搭建了半工业级液氧深度过冷验证平台,成功将液氮过冷至66 K以下。试验表明在0~3 L/s的液氧流量范围内,由于管道漏热,液氧过冷加注过程中其温度随着流量增大而降低。本试验验证了两级液氮浴过冷方案的可行性,为低温火箭发射场推进剂加注系统升级提供了理论及技术参考。  相似文献   

11.
液氢液氧火箭发动机预冷与启动过程数值模拟综述   总被引:2,自引:0,他引:2       下载免费PDF全文
程谋森  刘昆  张育林 《推进技术》2002,23(3):177-181
从预冷与启动过程推进剂供应管路内低温瞬变流计算、启动过程涡轮泵动态模型、燃烧室内点火过程动态模型、发动机瞬变模型的降阶方法及发动机系统动态方程解算的数值方法等几个方面,介绍了液氢液氧发动机预冷与启动过程数值模拟研究现状,分析了存在的问题,指出了进一步开展研究的方向。  相似文献   

12.
低温推进剂加注系统置换介质的相似性分析   总被引:1,自引:2,他引:1       下载免费PDF全文
李亦健  高旭  陈虹  雷刚  金滔 《推进技术》2018,39(3):703-708
为了研究新一代航天推进系统低温推进剂加注系统的气体置换流程特性,采用数值模拟的方法,对置换介质的流动过程进行了模拟和分析,重点考察低温液体增压罐的工作压力、气路调节阀开度对于系统中流动状态和流量及压力调节的影响,并分别以氢、氮作为介质对系统内的流动特性进行计算,分析置换过程中流量调节的氮氢相似性。结果显示,氮气置换系统所得的流量压力调节规律与氢气置换系统在影响因素和变化趋势方面是相似的;但是,在相同的液体储罐增压工作压力和调节阀开度下,氢气系统内的最大流速可达氮气系统内最大流速的5倍,考虑到氢气系统的安全性要求,精确的流量调节策略还需要根据实际氢的置换测试结果来进行确定。  相似文献   

13.
刘昌国  关亮  施伟  王子模 《推进技术》2021,42(7):1662-1670
为探究低温环境下单组元300N发动机的工作特性,揭示影响发动机低温性能的主要影响因素,以300N发动机为试验对象,开展了模拟飞行工况的发动机低温试验。给出了低温试验研究方法,分别从温度差异对发动机性能影响、催化剂活性差异对发动机低温启动特性影响和低温对电磁阀响应特性影响等方面获得研究结果。结果表明,低温是影响发动机低温性能的主要影响因素,-48℃条件催化剂无法完成推进剂的催化分解,发动机发生爆炸;-30℃条件下起活时间为80.5~87.5ms,发动机可正常启动,且启动温度与起活时间呈指数关系;催化剂批次差异也对发动机低温工作性能产生一定影响,不同批次催化剂低温起活时间的差异可达91ms;低温试验过程中,电磁阀的关闭受到低温推进剂粘性和背压的影响,产生了明显的迟滞现象,延迟时间约100ms,对发动机在轨的精准控制存在一定影响。  相似文献   

14.
为探究低温环境下单组元300N发动机的工作特性,揭示影响发动机低温性能的主要影响因素,以300N发动机为试验对象,开展了模拟飞行工况的发动机低温试验。给出了低温试验研究方法,分别从温度差异对发动机性能影响、催化剂活性差异对发动机低温启动特性影响和低温对电磁阀响应特性影响等方面获得研究结果。结果表明,低温是影响发动机低温性能的主要影响因素,-48℃条件催化剂无法完成推进剂的催化分解,发动机发生爆炸;-30℃条件下起活时间为80.5~87.5ms,发动机可正常启动,且启动温度与起活时间成指数关系;催化剂批次差异也对发动机低温工作性能产生一定影响,不同批次催化剂低温起活时间t10的差异可达91ms;低温试验过程中,电磁阀的关闭受到低温推进剂粘性和背压的影响,产生了明显的迟滞现象,延迟时间约100ms,对发动机在轨的精准控制存在一定影响。  相似文献   

15.
射流预冷装置温降与流阻特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足基于某型传统涡轮发动机射流预冷技术验证的需求,以射流预冷装置的温降和流阻特性研究为基础,设计了1种高效蒸发、低流阻的射流预冷装置,搭建了国内首套基于全尺寸的地面模拟试验系统,通过试验验证的方法研究了喷入介质的流量变化和进气温度变化对温降和流阻特性的影响,验证了射流预冷技术的有效性。结果表明:发动机入口来流温度不变时,射流预冷装置的温降特性主要取决于喷入介质的流量变化;随着来流温度的升高,射流预冷装置的介质蒸发率提高,来流降温量也会随之增大;通过调节喷射介质的流量,可将发动机风扇前气流温度维持在80~120℃;流阻特性主要取决于射流预冷装置自身,而介质喷射对流阻特性几乎不产生影响;射流预冷装置的总压损失小于4%,且随着来流温度的升高,总压损失有所减小。  相似文献   

16.
为研究以甲烷燃料为冷却剂的膨胀循环空气涡轮火箭发动机可行性及性能,采用部件法建立了甲烷预冷膨胀循环空气涡轮火箭(Air-Turborocket, ATR)发动机性能评估模型,研究了压气机压比和冷却剂当量比等参数在不同飞行状态下对发动机性能的影响,分析了不同来流工况下发动机正常工作对各部件的性能需求。计算结果表明,通过大于1.0倍当量比甲烷预冷作用,甲烷预冷膨胀循环ATR发动机能在压气机压比低于2.0条件下实现Ma0~4.0速域连续工作,但由于甲烷焓值较低,限制了压气机压比的提升,因此甲烷较低的单位功是限制发动机性能改进的主要因素;甲烷预冷膨胀循环ATR发动机的涡轮功率只有在较高落压比和甲烷压力条件下才能平衡压气机功率需求;冷却循环系统与空气的热力循环匹配问题是各部件协同工作的关键,通过适当选取发动机各部件控制参数,能在Ma0~4.0速域内获得1250~2114s的比冲、70~110s的单位推力和50%的总效率。  相似文献   

17.
液体推进剂在轨加注技术与加注方案   总被引:1,自引:0,他引:1  
梳理了推进剂空间加注的关键技术,介绍了不同流体空间加注的系统组成与加注程序,提出了我国开展相关研究的思路.研究表明:①气液相分离是实现推进剂空间加注的基础,常温推进剂可采用挠性隔膜或叶片式贮箱实现气液分离,而金属网状膜通道式液体获取装置(LAD)在低温流体空间分离领域效果最佳;②低温推进剂空间加注需要结合空间热防护技术、蒸发量控制技术等;③常温推进剂采用排气型空间加注,低温推进剂采用无排气加注,且可借助热力学排气系统实现大充灌率加注;④我国可按照先常温后低温的思路开展研究,并充分借鉴现有实验平台与研究成果的支持.   相似文献   

18.
射流装置降温性能评估及敏感性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究射流预冷喷射装置方案的降温性能及敏感性,以涡轮基组合循环发动机(TBCC)射流预冷技术为研究对象,提出由低流阻翼型结构的喷杆和雾化喷嘴组成的射流预冷喷射装置方案。利用FLUENT软件对射流预冷喷射装置方案进行了数值模拟,获得该装置在不同喷嘴布局下的流场特性,以流场均匀性、阻塞比、压力损失、温降等性能指标评选最优方案。经过初步分析,蒸发距离、气体来流温度、液滴粒径和喷射流量会对蒸发过程产生影响,因此采用DOE结合数值模拟计算,对各影响因素对降温量和蒸发量进行敏感性评估。分析结果表明:喷射后的温降情况受射流流量、气体来流温度和蒸发距离的影响明显,分别约为65%、20.4%和1.3%;受液滴粒径的影响不明显,约为0.21%。在后期的试验过程中,应充分考虑喷射流量、气体来流温度和蒸发距离对温降的影响。  相似文献   

19.
针对航空发动机的空气预冷系统U形竖管超临界流体传热异常问题,对超临界压力甲烷U形竖管内传热行为进行了数值研究。探究了热流密度、质量流量和运行压力对换热的影响,从超临界甲烷管内温度、速度、流动状态及无量纲数变化出发,阐述了超临界甲烷在U形管内异常传热现象形成的机理。结果表明,在较高热流密度(95k W·m-2)下,浮升力导致的自然对流是上升直管段内传热恶化的主要原因,运行压力的升高抑制了物性变化,促进了传热恶化向正常传热方向恢复。弯管段内的二次流使混合对流转变为强制对流,二次流形成的迪恩涡改善了径向温度分布不均匀性,强化了弯管段及其后续直管段的传热,且在弯管顶部位置传热的强化作用最为显著。  相似文献   

20.
为进一步了解大型卧罐预冷过程,搭建了60 m3卧式液氮贮罐预冷试验台,对小流量下贮罐预冷过程的降温和罐体应变特性开展了研究。结果表明:预冷过程罐内气体温度首先整体迅速降低,然后缓慢下降,且呈现分层现象;预冷初期液氮在罐底难以积累;靠近底部的罐壁降温过程分为三个阶段,首先与低温氮气进行自然对流传热,温度缓慢下降,液位增长到相应高度后与液氮进行沸腾换热从而温度迅速下降,最后稳定在液氮温度;对于最终液位以上的罐壁,一直维持着平稳的降温速率;贮罐轴向应变全为负值,随着预冷过程进行轴向应变随之增大,与液氮接触的局部罐壁轴向应变会迅速增加。该项试验的成功进行有力地补充了国内大型卧罐预冷试验数据的空白,为低温贮罐可靠性及寿命预测等相关研究提供数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号