首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
For estimating radiation risk in space flights it is necessary to determine radiation dose obtained by critical organs of a human body. For this purpose the experiments with human body models are carried out onboard spacecraft. These models represent phantoms equipped with passive and active radiation detectors which measure dose distributions at places of location of critical organs. The dosimetric Liulin-5 telescope is manufactured with using three silicon detectors for studying radiation conditions in the spherical tissue-equivalent phantom on the Russian segment of the International space station (ISS). The purpose of the experiment with Liulin-5 instrument is to study dynamics of the dose rate and particle flux in the phantom, as well as variations of radiation conditions on the ISS over long time intervals depending on a phase of the solar activity cycle, orbital parameters, and presence of solar energetic particles. The Liulin-5 dosimeter measures simultaneously the dose rate and fluxes of charged particles at three depths in the radial channel of the phantom, as well as the linear energy transfer. The paper presents the results of measurements of dose rate and particle fluxes caused by various radiation field components on the ISS during the period from June 2007 till December 2009.  相似文献   

3.
Fluxes of trapped protons with energies above 70 MeV measured onboard the NOAA-15 satellite during the 23rd solar activity cycle (from 1999 to 2006) are analyzed. Comparing to similar experimental data obtained for 1976–1996, regularities of changes in the proton flux at low drift shells (L = 1.14–1.20) of the Earths’s radiation belt caused by changes in the solar activity are discussed.  相似文献   

4.
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens.  相似文献   

5.
The significance of the contribution of solar protons to fluxes of trapped radiation in the Earth’s outer radiation belt (L > 2) is estimated for various phases of solar activity. In periods of high solar activity, proton fluxes with the energy 1–5 MeV at L = 2–3 for the bulk of time have SCR as a source, during a minimum of solar activity, trapped proton fluxes are determined by the conventional diffusive mechanism under the action of sudden IMF impulses.  相似文献   

6.
Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time2 on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions.  相似文献   

7.
In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.  相似文献   

8.
载人航天器密封舱内生物剂量三维仿真技术   总被引:1,自引:1,他引:0  
对载人航天器密封舱内航天员遭受的生物剂量进行研究分析,可为乘员辐射防护设计和工程实施提供依据。文章将基于一维深度-剂量计算、结合扇区射线法的三维辐射仿真技术运用于载人航天器总体设计中,以某中期驻留载人航天器为例,构建生物剂量仿真分析模型。计算实例分析表明,三维剂量仿真结果可有效指导乘员辐射防护优化设计,对后续长期载人飞行中的航天员辐射安全设计具有较强的实用性。  相似文献   

9.
Low fluxes of protons with energies 0.3–10 MeV were studied during 21–23 solar cycles as a function of the MgII index using the data of the instruments CPME, EIS (IMP8), and EPHIN (SOHO). It has been shown that a) during quiet time of solar activity the fluxes of protons (background protons) have a positive correlation with the MgII index value throughout the solar cycle, b) specific features of variations of the MgII index during the solar minima of 1986–1987 and 1996–1997 can be considered, as well as variations of background fluxes of low energy charged particles, to be manifestations of the 22-year magnetic cycle of the Sun, and c) periods of the lowest value of the MgII index are also characterized by the smaller values of the ratio of intensities of protons and helium nuclei than in other quiet periods. A hypothesis is put forward that acceleration in a multitude of weak solar flares is one of the sources of background fluxes of low energy particles in the interplanetary space.  相似文献   

10.
针对载人登月舱内失压应急返回过程中,不同条件下航天员穿着舱外航天服维持生存时的热舒适度问题,基于Matlab建立了人-航天服热模型.其中人体热模型基于Fiala模型建立,航天服热模型使用集总参数法建立.经过不同工况的对比,仿真结果与文献数据基本吻合,验证了模型的正确性.在此基础上,基于DTS热舒适度计算方法对不同失压紧...  相似文献   

11.
航天员空间活动接受辐射剂量限值的研究   总被引:2,自引:0,他引:2  
空间生物学辐射效应是由空间辐射环境引起的,空间辐射环境的变化受太阳活动性影响。空间辐射水平比地表面水平高,航天员在空间所接受剂量比地面人员接受的吸收剂量高出100倍甚至更高,并且高能重离子的生物效应显著。文章简要阐述了空间辐射环境、空间辐射生物学效应与航天员的辐射剂量限值等问题。  相似文献   

12.
红蓝光敏太阳电池空间环境效应探测器利用镓铟磷和三结砷化镓太阳电池来探测空间污染、原子氧和辐射环境及效应,搭载在中国空间技术研究院自主研制的“新技术验证一号”卫星上。文章通过分析红蓝光敏探测器在轨1年时间的探测数据,得到如下结论:红蓝光敏探测器污染电池板功率下降2.7%,等效污染累积增加量2.23×10^-5 g/cm^2,日均6×10^-8 g/cm^2;原子氧探测器在轨道高度499.226 km运行11个月,原子氧积分通量探测数据为9.7×10^20 AO/cm^2;辐射效应探测器(三结砷化镓太阳电池)在轨1年后累计接受辐射剂量(等效1 MeV电子注量)5.49×10^11 e/cm^2。  相似文献   

13.
模拟载人探月中航天员空间辐射风险评估   总被引:1,自引:0,他引:1  
空间辐射是长期载人航天飞行任务中影响航天员健康的重要风险因素。为了探求载人探月过程中对空间辐射的合理防护方式,文章借助空间辐射场模型对"嫦娥三号"飞行任务在不同质量厚度材料屏蔽下的舱内空间辐射环境进行了仿真计算,并确定了航天员各器官接受的空间辐射剂量、剂量当量以及有效剂量等辐射防护量以进行辐射风险评估。结果表明,随着屏蔽厚度的增加,航天员的各组织或器官的吸收剂量和剂量当量以及有效剂量均明显降低;采用质量屏蔽的方法对低于100 Me V的质子具有很好的防护效果,但对高能质子或重离子的防护效果不明显。计算和分析显示,载人探月过程中,只要采取适当的防护措施,航天员的空间辐射风险是可控的。  相似文献   

14.
Beyond the Earth's atmosphere, galactic cosmic radiation (GCR) and solar energetic particles (SEPs) are a significant hazard to both manned and robotic missions. For long human missions on the lunar surface (months to a year) a radiation shelter is needed for dose mitigation and emergency protection in case of solar events. This paper investigates the interaction of source protons of solar events like those of February 1956 that emitted many fewer particles with energies up to 1000 MeV and of the October 1989 event of lower protons energy but higher fluence, with the lunar regolith and aluminum shielding of a lunar shelter. The shelter is 5 m in diameter and has a footprint of 5×8 m and a 10 cm thick aluminum support structure, however, actual thickness could be much smaller (~1–2 cm) depending on the weight of the regolith shielding piled on top. The regolith is shown to be slightly more effective than aluminum. Thus, the current results are still applicable for a thinner aluminum structure and increased equivalent (or same mass) thickness of the regolith. The shielding thicknesses to reduce the dose solely due to solar protons in the lunar shelter below those recommended by NASA to astronauts for 30 day-operation in space (250 mSv) and for radiation workers (50 mSv) are determined and compared. The relative attenuation of incident solar protons with regolith shielding and the dose estimates inside the shelter are calculated for center seeking, planar, and isotropic incidence of the source protons. With the center seeking incidence, the dose estimates are the highest, followed by those with isotropic incidence, and the lowest are those with the planar incidence.  相似文献   

15.
We investigate the relative occurrence rate for various types of the solar wind and their geoeffectiveness for magnetic storms with Dst < —50 nT. Both integrated effect for the entire time 1976–2000 and variations during this period of 2.5 cycles of solar activity are studied As raw data for the analysis we have used the catalog of large-scale types of the solar wind for the period 1976-2000 (see ftp://ftp.iki.rssi.ru/omni/) created by us with the use of the OMNI database (http://omni.web.gsgc.nasa.gov) [1] and described in detail in [2]. The average annual numbers of different type of events are as follows: 124 ±81 for the heliospheric current sheet (HCS), 8 ±6 for magnetic clouds (MC), 99 ±38 for Ejecta, 46 ±19 for Sheath before Ejecta, 6 ±5 for Sheath before MC, and 63 ±15 for CIR. The measurements that allowed one to determine a source in the solar wind were available only for 58% of moderate and strong magnetic storms (with index Dst < —50 nT) during the period 1976–2000. Magnetic clouds (MC) are shown to be the most geoeffective (~61%). The CIR events and Ejecta with Sheath region are three times less geoeffective (~20–21 %). Variations of occurrence rate and geoeffectiveness of various types of the solar wind in the solar cycle are discussed.  相似文献   

16.
We have made a generalization of experimental data on the fluxes of trapped protons that were detected by various instruments on three low-orbit satellites (NOAA-17, Universitetskii-Tatiana, and CORONAS-F) during April of 2005. Based on these data, a new quantitative model is suggested to describe the fluxes of trapped protons. It allows one, using analytical expressions, to predict the fluxes of protons with energy from 30 keV to 140 MeV under quiet geomagnetic conditions in the period close to the solar activity minimum at drift shells L = 1.14–1.4. The suggested model establishes differential directional fluxes of protons as a function of pitchangle on the geomagnetic equator and takes into account the anisotropy of trapped particles on the lower boundary of the Earth’s radiation belt.  相似文献   

17.
In order to explore the Moon and Mars it is necessary to investigate the hazards due to the space environment and especially ionizing radiation. According to previous papers, much information has been presented in radiation analysis inside the Earth's magnetosphere, but much of this work was not directly relevant to the interplanetary medium. This work intends to explore the effect of radiation on humans inside structures such as the ISS and provide a detailed analysis of galactic cosmic rays (GCRs) and solar proton events (SPEs) using SPENVIS (Space Environment Effects and Information System) and CREME96 data files for particle flux outside the Earth's magnetosphere. The simulation was conducted using GRAS, a European Space Agency (ESA) software based on GEANT4. Dose and equivalent dose have been calculated as well as secondary particle effects and GCR energy spectrum. The calculated total dose effects and equivalent dose indicate the risk and effects that space radiation could have on the crew, these values are calculated using two different types of structures, the ISS and the TransHab modules. Final results indicate the amounts of radiation expected to be absorbed by the astronauts during long duration interplanetary flights; this denotes importance of radiation shielding and the use of proper materials to reduce the effects.  相似文献   

18.
The influence of auroral electojets and solar wind parameters on variations in low-latitude geomagnetic disturbances and D st during strong magnetic storms on November 7–8, 2004 with D st ≈ −380 nT and on November 9–10, 2004 with D st ≈ −300 nT is studied on the basis of global geomagnetic observations. It is found that the impulsive variations of the western electrojet intensity with a duration of Δt ≈ 1–2 h (probably, substorm disturbances) lead to positive low-latitude disturbances of ΔH at Φ′ ≈ 10°–30° and to disturbances of the same durations with an amplitude +ΔH ∼ 30–100 nT at latitudes of the polar cap (Φ′ ≈ 75°–80°). More durable (with Δt ≥ 10 h) convection electrojets whose centers are shifted to latitudes of ∼50°–55° in the process of storm development are the main cause of the increase in negative values of ΔH at low latitudes and D st . It is shown that meridional dynamics of position of the center of electrojets and the equatorial boundary of the auroral oval is governed by variations (increase or decrease) in the intensity of negative values of the IMF B z component. It is assumed that in these storms the intensification of the magnetospheric partially ring current closes the circuit to the ionosphere with the help of field-aligned currents at the equatorial boundary of the auroral oval is the main cause of the magnetic field depression at low latitudes.  相似文献   

19.
《Acta Astronautica》2007,60(4-7):479-487
Although specialists have attempted to improve the space suit to provide better protection in open space or on planetary surfaces, there has been a relative lack of attention to features of human thermoregulatory processes that influence comfort and therefore have an impact on the effectiveness of protective equipment. Our findings showed that different body tissues transfer heat in/out of the body in a different manner. There are also individual differences in thermal transfer through body areas with different proportions of tissues; therefore, data on the thermal profile of each astronaut needs to be used to estimate the optimal body areas for heat/cold transfer in and out of the body in an individually tailored cooling/warming garment. Principles for supporting thermal comfort in space were formulated based on a series of studies to evaluate the human body's response to uniform/nonuniform thermal conditions on the body surface. We conclude that future space suit design and comfort support of astronauts can be easier and more effective if these principles are incorporated.  相似文献   

20.
Satellite data on the position of maximum L m of the belt of relativistic electrons during strong storms, obtained at low altitudes (∼500 km) and at high altitudes (near the geomagnetic equator plane), are compared (L is the McIlwain parameter). Both at low and high altitudes the maximum of the storm belt of relativistic electrons is formed on the outer edge of the ring current. It is shown that the geomagnetic field can substantially deviate from dipole configuration not only at the geomagnetic trap periphery, but at its core as well (at L ∼ 2.5–3.5), and these deviations are nonlinear. Simultaneous measurements of the fluxes of relativistic electrons at low and high altitudes can serve for estimation of the real shape of magnetic field lines at L < 4 during geomagnetic disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号