首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
大型飞机在飞行过程中机身后体会产生一对反向旋转的脱体涡(后体主涡),该涡与平尾翼尖涡共同构成飞机后体的涡系结构。在风洞中,利用激光粒子测速(PIV)方法,对单独后体和加装不同展长平尾的后体,分别研究涡系结构的动力学特征。结果表明:后体主涡的涡核中心沿流向明显向上移动;加装平尾后,涡系呈现典型的四涡结构,平尾翼尖涡对后体主涡影响显著,加大了后者向上移动的趋势,同时使其沿展向外移,并显著削弱其涡旋强度;平尾展长增加后,后体主涡受到的影响有所减弱。在低速环境下,来流速度对后体涡系结构的无量纲动力学参数影响较小。  相似文献   

2.
降雨作为一种气象条件,与飞机尾涡相互作用,改变自身与尾涡的动力学特性。高强度的尾涡导致后机难以着陆、复飞甚至坠机等后果,因此尾涡的演化进程对评估后机的飞行安全有重要意义。为了分析尾涡与降雨的相互干扰,基于欧拉-欧拉多相流模型,研究了降雨条件下的尾涡演化特性。对于多相流模型中的空气相模拟,采用大涡模拟湍流模型,雨相通过两个标量方程控制其动力学输运,两相间的耦合利用动量源项实现能量的传递。分析了降雨对环量、涡量和涡核附近速度分布、下沉速度等尾涡演化特征量的影响。结果表明:降雨加速了环量的衰减,减小了涡心最大涡量,使速度分布趋于平滑,改变了尾涡下沉规律。另外,尾涡也影响了雨滴的下降轨迹和浓度分布。  相似文献   

3.
为了更深入精确地研究航空器尾涡演变规律,保障航空器安全运行,本文采用数值模拟方法对不同温度垂直递减率下A330-300飞机尾流的耗散规律进行了研究。数值模拟选择SST (Shear stress transport) k-ω湍流模型,通过构建5种不同温度垂直递减率下的温度场,并在温度场内编译A330-300飞机尾流场实现不同温度垂直递减率下的演化。通过数值模拟结果与雷达探测数据的对比验证了数值模拟方法可靠性。计算结果表明,一般湍流强度下,不同的温度垂直递减率主要作用于尾涡衰减阶段,通过改变尾涡内外温度影响尾涡演化。温度垂直递减率越小,尾涡衰减区环量减小得越快;温度垂直递减率越大,尾涡下沉的速率越大,快速耗散后的涡核间距越大。  相似文献   

4.
本文通过风洞实验研究了翼尖涡的物理特征以及诱导阻力的减阻机制。实验中利用3DPIV(三维粒子图像测速技术)技术得到了翼尖涡的物理特征,并基于本文提出并设计的翼尖气动力测量装置,得到了机翼翼尖处的诱导阻力。实验结果表明,机翼翼尖涡的无量纲环量会随机翼迎角及风速的增大而增大。翼尖涡无量纲环量的减小以及翼尖涡与机翼之间距离的增大都会引起诱导阻力的减小。具体而言,通过抑制翼尖涡的无量纲环量,增加翼尖涡与主机翼之间的距离,减小翼尖涡与机翼之间的相互作用,实现机翼翼尖诱导阻力的减阻。  相似文献   

5.
风力机叶尖涡特性及其控制   总被引:1,自引:0,他引:1  
通过数值模拟研究了风力机叶片尖部尾涡强度和控制方法。在叶片尖部设计了不同倾斜角的漩涡扩散器来控制叶尖涡,分析了风力机叶片尖部漩涡特征和叶片表面压力分布情况。同时,研究了叶尖涡强度随风轮尖速比变化规律。研究结果表明,叶尖涡扩散器能够提高叶尖涡涡核的总压,削弱其漩涡强度。在粘性作用下,风力机尾流漩涡耗散更快,可有效地削弱翼尖尾涡的强度,提高叶片效率。  相似文献   

6.
翼尖帆片将原型机翼集中的翼尖涡分散成多个小涡,加快翼尖涡的耗散,从而降低机翼诱导阻力。为进一步了解翼尖帆片对机翼在地面效应下流动特性的影响,分别对安装有3片椭圆形和梯形帆片的NACA4412机翼开展了风洞实验研究。测量了2种帆片机翼的气动力和翼尖涡结构,并通过比较流动结构,分析了2种机翼气动力产生差异的原因。机翼的升、阻力用六分量盒式风洞天平测量,翼尖涡速度分布用七孔探针扫描获得,以机翼弦线为特征长度的雷诺数为1.5×105。当远离地面时,梯形帆片与椭圆帆片的升、阻力差别较小,但随着机翼逐渐接近地面,梯形帆片的增升减阻效率逐渐高于椭圆帆片。而机翼升阻力的差异,主要是由于局部气流方向角对各帆片形成的有效迎角有所差别,使得帆片对主翼产生不同的增升和减阻贡献。  相似文献   

7.
对翼梢组合小翼构型和翼梢喷流控制翼尖涡进行了实验研究,在此基础上,提出组合小翼与翼梢喷流联合控制翼尖涡的方法,并对翼尖涡的控制效果进行了实验研究。实验在一低速直流式风洞中进行,基本模型为NACA0015二元截尖翼型,基于弦长和自由来流速度定义的雷诺数Re=5.3×104,喷流系数(喷流与自由来流的动量比)Cμ=0.017。研究结果表明:组合小翼构型能有效破碎主涡,改善翼尖部位的局部流动,并使最大升力系数提高12.3%;喷流可加剧涡核摆动,控制涡核位置,对翼尖涡的初始生成有一定的抑制作用;2种组合构型均达到了较好的翼尖涡控制效果,其中,喷流加强了组合小翼产生的同向涡之间的相互作用。在X/C=3时,瞬态涡量峰值的平均值相比单独用“+0-”构型控制时减小37%,比没有任何控制时减小79%。组合构型的控制效果取决于喷流控制能否促使翼尖涡主涡与小涡涡系尽早、尽快地相互作用以及主涡涡核的偏移方向。  相似文献   

8.
基于改进涡格法的飞翼布局飞机稳定性导数计算   总被引:1,自引:0,他引:1  
由于没有垂直安定面,无尾飞翼布局飞机航向安定性通常接近中立或略微为负,造成了其横航向稳定性与常规布局飞机具有很大区别。因此无尾飞翼布局飞机在概念设计阶段,必须在进行气动性能优化的同时,计算获得较为准确的气动导数数据以对飞机横航向稳定性进行分析,这对气动计算软件计算精度和效率提出了很高的要求。本文在现有涡格法计算软件的基础上,提出了改进算法。以一概念飞翼布局飞机为算例进行计算,结果与风洞实验结果的对比证明:飞机具有侧滑角的情况下,改进算法比原算法计算精度有明显提高。  相似文献   

9.
在1m非定常风洞中开展了两机编队飞行试验研究。前机采用尾支撑转接垂直叶型支杆与坐标架连接,可以实现相对位置(纵向、侧向和垂向间距)的精确改变;后机通过尾支撑连接到风洞的主支撑机构上,可以实现迎角的变化。采用内式六分量应变天平测量后机的气动力受前机尾涡流影响的变化情况,对后机的绕流场进行了PIV测量。试验中使用了2组模型,一组是简化的翼身组合体模型,另一组是翼身融合体飞翼布局模型。结果表明:当前机翼尖涡靠近后机翼面时,后机的升阻比变化较明显;当前机翼尖涡靠近后机翼尖时,后机可获得最大升阻比;前机迎角增大时,后机的升阻特性有较明显变化;当后机的迎角大于8°时,其升阻比基本不受前机影响。  相似文献   

10.
翼尖涡的统计特性主要包括涡核半径、平均涡量、旋涡切向速度等,其准确测量是翼尖涡控制技术得以有效实施的重要前提。采用二维粒子图像测速技术在水洞中对椭圆机翼生成的翼尖涡尾流场进行了实验观测,测量区域覆盖翼尖涡发展的近场、中远场。针对涡对不稳定运动导致旋涡统计参数失真的情况,采用涡核中心对齐平均(re-centered average)的方法,屏蔽掉涡对不稳定运动对旋涡统计参数的影响,提高了统计结果的准确度。Re-centered average统计结果表明:涡核半径和涡量峰值随流向站位分别呈现出近似符合幂函数的增长和衰减规律;旋涡不稳定运动的振幅随机翼迎角增大而减小,表明涡对抵抗扰动的能力随涡强度的增大而增强。  相似文献   

11.
非线性气体振荡整流效应对翼尖涡的影响   总被引:3,自引:0,他引:3  
以圆管内气体的非线性振荡理论和实验研究成果为基础,利用开口圆管中气体非线性振荡的整流效应,通过翼面开缝以及翼尖开口引入气体振荡,主要进行翼尖涡控制的实验研究。实验结果表明,翼面开缝和翼尖开口引入气体振荡在大迎角时对提高升力系数、增大机翼的稳定性有一定作用。同时,翼尖开口引入气体振荡能较好改善翼尖涡的位置和强度。对比翼面开缝以及无气体激振状态。翼尖涡在翼尖气体振荡条件下向翼尖外部移动了近3/4个弦长,向上翼面方向移动了近1/4弦长。  相似文献   

12.
涡翼互作用现象影响航空运输编队飞行的效益和配对进近的安全。采用数值模拟方法,针对无入射涡影响的后翼以及稳定状态下的入射涡位于后翼3个典型展向位置共4种情况,研究入射涡与后翼的相互作用。对比分析了基于Q准则的三维涡量、不同流向位置的涡量,以及后翼吸力面静压系数、气动参数和滚转力矩系数等。研究结果表明:稳定状态下的入射涡在后翼外侧时,翼尖涡受上洗运动影响;在内侧时,受下洗运动影响。两种情况下,翼尖涡强度均受到抑制。入射涡越靠近后翼翼尖,后翼升力系数、升阻比、滚转力矩系数越大,且在其与后翼翼尖重合时都达到最大值。这一结果可为编队飞行和配对进近的前后机布局提供参考。  相似文献   

13.
介绍了国内外垂尾抖振试飞的最新进展情况,并就抖振试飞中可以采用的试飞方法,从理论上进行了分析。飞行试验采用收敛转弯的试飞方法,通过在左、右垂尾上加装的振动加速度传感器,得到了不同马赫数下垂尾的抖振响应情况。在对数据进行均方根分析、时频分析和自功率谱密度分析等方法的基础上建立起抖振响应和迎角、频率的关系后发现:垂尾抖振响应主要集中在垂尾低阶模态频率上;垂尾的抖振响应随迎角、马赫数的增加而增加,其中受迎角的影响大于受马赫数的影响;且飞机在超过初始抖振迎角以后,随迎角的继续增加,垂尾翼尖后缘处的抖振响应显著大于垂尾翼尖前缘位置。  相似文献   

14.
针对低雷诺数的近程无人机,利用涡格法(VLM)对无人机气动特性进行了加装翼尖小翼优化设计,并通过风洞实验进行了验证.首先给出了翼尖小翼的几何参数并分析其对全机气动特性的影响,其次利用涡格法对小翼进行气动建模和优选,针对无人机巡航状态给出了小翼优化结果,最后利用风洞实验对优化前后的无人机进行了吹风实验对比验证,实验结果表明,涡格法和风洞实验结果在线性段相符,涡格法能够较准确地描述和预测翼尖小翼特性,加装翼尖小翼后的无人机巡航状态升阻比提高12%,全机滚转阻尼加大,偏航阻尼变化很小.  相似文献   

15.
双翼尖涡Rayleigh-Ludwieg不稳定性实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用一种结构化矩形直机翼涡发生器产生一对大小不同、方向相反的翼尖涡,调节双涡涡量的大小比例Γ1/Γ2及其间距b,触发两涡Rayleigh-Ludwieg不稳定性.实验采用流动显示方法定性观察双涡相互作用过程,通过二维PIV(粒子成像测速)系统定量研究双涡相互作用特征,得到双翼尖涡中主涡及次涡的运动特性、环量-时间特性.对不同实验参数下残余环量比例进行分析,发现双涡涡量大小比例Γ1/Γ2在1.3~1.4、b为50mm时双涡相交削弱效果良好,能够实现翼尖涡强度削弱程度达30%~40%.  相似文献   

16.
为探讨鸭式布局飞机全机流场随迎角的演变规律 ,分别对无鸭翼布局与鸭式布局两种情况于北航大水洞进行了染色液流场显示实验。同时 ,为与水洞结果对比分析 ,给出了风洞测力部分结果。鸭式布局模型除鸭翼以外 ,包括机身、基本翼、翼前小边条及垂尾和腹鳍 ,其中鸭翼相对机身负偏 1 0°。显示结果表明 ,对两种布局而言 ,涡系结构都非常复杂。无鸭翼布局的机身涡很强 ,且机身涡对边条涡、翼根涡有明显诱导作用 ,三涡相互绕合并向展向偏折。鸭式布局的机身涡由于鸭翼存在其强度变弱 ,边条涡与翼根涡绕合趋势增强 ,两涡最终合并为单一集中涡并向外翼偏折 ,且其涡核位置较无鸭翼布局更靠近机翼前缘。鸭式布局主翼涡破裂较无鸭翼布局有所延迟 ,但鸭翼自身涡系破裂较早。  相似文献   

17.
某飞机部件高速风洞测力天平研制   总被引:1,自引:0,他引:1       下载免费PDF全文
为满足某飞机部件高速测力试验的需要,研制6台部件测力天平来测量飞机不同部件(机翼、平尾、垂尾、短舱、短舱+挂架、翼尖小翼)所受的气动载荷,天平设计载荷极不匹配,且模型空间有严格的限制.设计时,主机测力天平采用后腹支撑,安装在机身构造线的下方,为部件天平的安装提供了可能,同时针对不同的天平采用了不同的结构形式:机翼天平采用正八边形结构,垂尾天平采用三片梁结构,平尾天平、短舱、短舱+挂架采用矩形梁结构,翼尖小翼天平采用"Z"字形结构,既满足了天平的测量需要,又确保了天平在模型中的安装位置和试验的足够间隙.部件天平的成功研制,及时为型号研制提供了可靠的试验数据.  相似文献   

18.
1999年12月16日TB2008839号飞机在本场飞行训练长五边下滑着陆放襟翼时,左右襟翼放出约15°就卡死放不出。飞机着陆后机务人员检查襟翼时发现,操纵收放电门襟翼已不能正常收起或放下,稍用力扳动襟翼,襟翼便处于自由状态,表明襟翼操纵已失去控制。TB200飞机襟翼操纵失效在我院尚属首次出现的故障。我们当即打开飞机腹部底板检查襟翼操纵拉杆、摇臂,均固定牢固,传动灵活。再检查襟翼电机与涡杆传动机构,发现涡杆轴向运动失去控制,处于自由状态,故判定为涡杆传动机构失效。进一步分解检查涡杆传动机构,发现二级传动齿轮与涡杆啮合的内螺纹…  相似文献   

19.
《今日民航》2011,(12):16-16
飞机除了舱内有各种用途的灯外,外部也有着色彩缤纷、闪烁不停的灯光。这些灯其实并不是为了装饰飞机,而是防止碰撞的航行灯和防撞灯。航行灯安装在机翼的两个翼尖和垂直尾翼的顶端。民航条例规定左翼尖的灯光为红色、右翼尖的灯光为绿色、尾翼是白色或黄色灯光。依据"左红右绿中间黄"的规则,可以轻易判断出飞机是朝你飞来还是离你而去。防撞灯则装在机身的上方或下腹部,这种灯亮度很强并且按一定的频率不停地闪动,通常每分钟闪动90次。颜色分两种,有的飞机用红白两色,有的飞机用强烈的青白色闪光灯。大型飞机往往要安装3个以上的防撞灯,使它在很远的距离外就可以被发现。  相似文献   

20.
本文对进气道的尾涡进行了定量的实验研究。试验在美国麻省理工学院莱特兄弟风洞中进行。进气道气流速度与风速之比为22。用五孔探针详细地测量了沿两个矩形回路的气流速度向量以获得速度环量。所得的结果表明沿回路的角度分布与速度分布是合理的。并由此得到了环量(为1.39米~2/秒)和涡心的位置。由两回路的大小以及[3]中的压力分布推断尾涡系具有片状结构,但大部份涡度则集中在尾涡涡核附近。这样就直接地确切地证明了进口涡-尾涡体系的存在,并为定量地证明进口涡尾涡系形成的机理提供了有力的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号