首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development ("FERTILE" project); 2) influence of microgravity and space radiation on the organization and preservation of specialized structures in the neurons and muscle cells (in vitro; "CELIMENE" PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).  相似文献   

2.
附加深空机动的借力飞行全局优化   总被引:1,自引:0,他引:1  
借力飞行轨道设计是一个多变量强约束的非线性优化问题, 初始方案通常采用不需要初值猜测的全局优化算法进行优化, 但是借力点处的C3匹配原则等较强的约束条件极大影响了全局算法的收敛性能. 针对这一问题, 研究了附加深空机动的借力飞行模型, 在借力点处引入B平面和辅助转角, 推导了离开超越速度的解析表达式, 通过求解Lambert问题和轨道递推得到日心转移段的深空机动脉冲. 利用微分进化算法对问题进行优化, 结合木星探测算例, 对VEE (Venus-Earth-Earth), VEME (Venus-Earth-Mars-Earth)和VEVE (Venus-Earth-Venus-Earth)三种深空机动借力飞行方案进行优化, 给出了优化结果.   相似文献   

3.
基于我国未来木星系探测任务需求,初步设计了任务轨迹。以目前的发射能力,要实现木星的环绕探测必将利用行星借力,需设计借力轨迹。首先将脉冲变轨的轨迹设计问题转化为参数优化问题,在满足2029—2032年间发射并且飞行时间不超过7年的约束条件下,使用PSO算法对发射时刻、借力时刻、深空机动时刻、到达时刻等参数进行优化,使得探测器需提供的总速度增量最小。探测器进入木星系后,利用木卫3借力捕获至环木大椭圆轨道,又利用木卫4构造共振借力,最终捕获至木卫4的环绕轨道。在此基础上,还考虑了天王星飞越的拓展任务,天王星探测器在到达木星时与木星系探测器分离,利用木星借力可无消耗飞往天王星,并在2043年完成天王星的飞越探测任务。  相似文献   

4.
吊挂系统是地面模拟空间机械臂重力卸载试验的重要方法之一.针对传统PID控制方式动作响应慢、鲁棒性差等缺点,提出了一种基于径向基函数(RBF)神经网络的智能控制方式.该方式有很强的非线性拟合能力,且学习规则简单,可映射任意复杂的非线性关系,便于计算机实现.利用该特性,设计了一种重力卸载精度较PID控制方式更高的控制器.该...  相似文献   

5.
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.  相似文献   

6.
The paper describes an investigation of the influence of gravity on the early differentiation of gravity receptors in Xenopus embryos and larvae. There is evidence that the expression of crystals in the saccus endolymphaticus was statistically greater when the embryos developed in near weightlessness (hypogravity) than on earth. The function of these crystals is unknown but they may contribute to the functioning of the vestibular apparatus.  相似文献   

7.
We investigated the effect of substratum adhesiveness on stimulated lymphocyte blastogenesis by reducing and blocking cell adhesion with poly (2-hydroxyethyl methacrylate) (poly-HEMA) in a simple on-ground system. Cells grown on medium-thick and thick poly-HEMA films were rounded in shape and displayed no signs of spreading. By contrast, on tissue culture plastic and very thin poly-HEMA films, they showed clear signs of spreading. The mitogenic response of lymphocytes grown on thick poly-HEMA films was reduced by up to 68% of the control (tissue culture plastic). Interferon-gamma production was near zero when the cells were grown on the least adhesive substratum. On uncoated plastic, activated lymphocytes subjected to high gravity (20g) exhibited an increased proliferation rate (40%) compared with 1g. By contrast, on poly-HEMA, high gravity did not improve lymphocyte responsiveness. These results show that activated lymphocytes need to anchor and spread prior to achieving an optimal proliferation response. We conclude that decreased lymphocyte adhesion could contribute to the depressed in vitro lymphocyte responsiveness found in the microgravity conditions of space flight.  相似文献   

8.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

9.
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed.  相似文献   

10.
In investigating the effect of gravitational changes on development, it is instructive to think of altered gravity (delta g) as a teratogen--that is, an environmental factor influencing development. Observed effects on skeletal development include: suppression of morphogenesis in centrifuged mouse limb buds; advanced fusion stages in centrifuged mouse palates; smaller crown rump lengths (CRL) and decreased number of pregnancies in centrifuged rats and mice; altered differentiation of growth plates in young growing rats in space; and decreased length of calcified long bone regions in fetal rats exposed to microgravity in utero. These studies show that delta g is able to alter development in vivo and in vitro and suggest that delta g operates, at least in part, at the cellular level.  相似文献   

11.
在长期空间飞行过程中, 骨质丢失是一个严重问题. 羟基磷灰石(HAP)晶体是骨骼的主要成分, 骨骼中的胶原蛋白纤维在HAP生长结晶过程中起到关键作用. 研究了胶原蛋白纤维化过程在模拟微重力和常重力条件下的变化, 对以胶原 蛋白纤维作为模板生长出的HAP晶体形貌进行了观察. 结果表明, 不同浓度胶原蛋白溶液中形成的胶原蛋白纤维, 其内部孔隙数量和尺寸在模拟微重力条件下要明显大于常重力条件下, 胶原蛋白纤维内部孔隙的分布也不同于常重力条 件下的结果. 以模拟微重力条件下形成的胶原蛋白纤维为模板生长出的HAP 晶体主要为立方体状, 而以常重力条件下形成的胶原蛋白纤维为模板生长出的 HAP晶体形貌主要为板状. 该结果有助于未来进一步阐明空间骨质丢失的机理.   相似文献   

12.
摘要: 根据某型号搭载的七自由度空间机械臂的测试任务,设计一套空间机械臂地面仿真与测试系统.该系统可以完成两方面的功能:一是利用空间机械臂模拟器进行半物理仿真,对空间机械臂控制线路盒的电接口和控制软件功能进行测试;二是采用吊丝卸载装置对空间机械臂真实产品进行全物理试验,对在轨任务进行地面演示验证.利用所设计的测试系统已经完成了某型号空间机械臂的地面测试与演示验证任务,目前该型号已经发射成功,空间机械臂已经成功完成在轨试验.所设计的空间机械臂地面仿真与测试系统具有较好的通用性和扩展性,可以应用于其他空间机械臂产品的地面测试.  相似文献   

13.
During the entire evolution of life on Earth, the development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hypergravity (centrifuge) or microgravity (spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on these questions, comprising gravistimulated effects on invertebrates and vertebrates (with the exception of mammals, since respective biomedically oriented reviews abound), focusing on developing fish as model systems, with special emphasis on the effect of altered gravity on the developing brain and vestibular system, comprising investigations on behaviour and plastic reactivities of the brain and inner ear. Clues and insights into the possible basic causes of space motion sickness-phenomena (SMS; a kinetosis) are provided as well as perspectives in regard to future work to be done including studies on the ISS concerning the analysis of gravistimulated effects on developmental issues (imprinting phase for graviperception?).  相似文献   

14.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5–19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.  相似文献   

15.
Influence of the nature of heat transfer on crystallization from a cooling solution has been investigated. Sodium polymethylacrylate (PMANa) was used to adjust the viscosity of the medium in the desired way. It was shown that the nature of heat transfer influences the crystallization kinetics and that the absence of convection results in enhanced supercooling. These findings corroborate our interpretation of space experiments /1/. The KNO3-H2O-PMANa system is suitable for a detailed analysis of the influence of zero gravity on the nucleation and crystallization processes.  相似文献   

16.
针对在微重力环境中运行的载人航天飞行器上的电缆和导线在工作时由于电流过载导致温度升高而引起着火的情况,提出了"功能模拟"实验原理,并且利用地面实验设备对微重力环境下导线的着火前期特性进行了功能模拟实验研究.通过实验,得到了在微重力情况下由于浮升力的减小使自然对流减弱导致电流过载时导线的热平衡温度高于地面正常重力情况,从而证明了这正是引起航天飞行器着火的潜在点火源.   相似文献   

17.
Influence of different natural physical fields on biological processes.   总被引:1,自引:0,他引:1  
In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus (Proteus vulgaris), spatial disorientation in coleoptiles of Wheat (Triticum aestivum) and Pea (Pisum sativum) seedlings, mutational changes in Crepis (Crepis capillaris) and Arabidopsis (Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.  相似文献   

18.
Plants will be an important component in bioregenerative systems for long-term missions to the Moon and Mars. Since gravity is reduced both on the Moon and Mars, studies that identify the basic mechanisms of plant growth and development in altered gravity are required to ensure successful plant production on these space colonization missions. To address these issues, we have developed a project on the International Space Station (ISS) to study the interaction between gravitropism and phototropism in Arabidopsis thaliana. These experiments were termed TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS) in 2006. In this paper, we provide an operational summary of TROPI and preliminary results on studies of tropistic curvature of seedlings grown in space. Seed germination in TROPI was lower compared to previous space experiments, and this was likely due to extended storage in hardware for up to 8 months. Video downlinks provided an important quality check on the automated experimental time line that also was monitored with telemetry. Good quality images of seedlings were obtained, but the use of analog video tapes resulted in delays in image processing and analysis procedures. Seedlings that germinated exhibited robust phototropic curvature. Frozen plant samples were returned on three space shuttle missions, and improvements in cold stowage and handing procedures in the second and third missions resulted in quality RNA extracted from the seedlings that was used in subsequent microarray analyses. While the TROPI experiment had technical and logistical difficulties, most of the procedures worked well due to refinement during the project.  相似文献   

19.
The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.  相似文献   

20.
Optomechanical systems are very complex requiring a high degree of accuracy. The carrier structure of an optical system is required to maintain the position of the optical components with respect to each other within the design tolerances. The most common loads on optical systems are self-weight, due to gravity orientations, and temperature ranges, due to exposure to rapidly changing temperatures from very cold to very hot and during launch. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations.In order to ensure reliability during a space flight mission, the optomechanical engineer must understand the requirements of the space flight environment as well as the physics of failure of the optical components themselves; this can minimize the risks of on-orbit failure.This paper focuses on the optomechanical optimal design lens mounting using glue pads bonding. The main idea of this research study is to obtain an optimal choice of the position of the glue to fix the lenses on the barrel in such a way that we obtain a configuration of the optical assembly performance with less stress.In this paper, an investigation was performed using several methods including (thermo-elastic analysis, the margin of safety and lens distortion analysis). The results show that the position with six contacts glue pads is the best configuration compared to other configurations. This solution can be very helpful for decision-makers and optical engineers during the development phases of space optomechanical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号