首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
FDTD-PWS法用于分析毫米波透镜天线焦面场   总被引:1,自引:1,他引:0  
提出一种新的节省计算空间的FDTD-PWS混合算法,并应用于透镜天线的焦面场分析.首先采用FDTD(Finite-Difference Time-Domain)求解得到聚焦透镜天线的口面场的幅度和相位分布,再通过PWS(Plane Wave Spectrum)外推至焦平面,求解得出焦面场分布.根据天线场分布的对称性,将PEC(Perfect Electric Conductor)和PMC(Perfect Magnetic Conductor)边界应用于FDTD的仿真过程,使仿真模型缩减为原模型的1/4,进一步节省了计算空间.应用于毫米波聚焦透镜天线的焦面场仿真分析,并对其焦面场进行平面近场扫描测试,将仿真结果进行探头补偿后与实验数据作比较,证明该方法是精确和高效的.   相似文献   

2.
电磁散射场和雷达散射截面积的计算   总被引:2,自引:1,他引:1  
计算了绕二维物体的时域电磁散射场的空间分布和雷达散射截面积 (RCS).通常的电磁场计算是频域的,采用高频计算方法,而流场计算是时域的.由于以研究流场--电磁场优化设计计算为目的,需要统一采用时域计算,因此重点采用矢通量分裂法这种时域方法计算了RCS ,通过将特征值分裂为正负两部分,抑制了各自的误差.此外,采用LaxWendroff方法作为对照.两种方法的结果一致.  相似文献   

3.
基于IGES文件输入的图形电磁计算方法研究   总被引:4,自引:2,他引:2  
在不同波段不同极化下,应用图形电磁计算(GRECO)法计算了某模型的高频雷达散射截面(RCS).采用计算机硬件完成遮挡计算,通过五光源分两次照射获取模型表面法矢信息.在计算镜面散射时,利用两个Sinc函数的乘积消除物理光学计算中的奇异点,棱边边缘绕射用等效电磁流法计算.最终计算结果和试验结果吻合较好,表明这种方法估算目标RCS快捷有效,可以应用于工程分析.在目标造型端添加了识别读入IGES文件的端口后,解除了对模型造型格式的严格限制,扩大了其应用范围.   相似文献   

4.
采用电流密度卷积FDTD算法(JEC-FDTD)计算了等离子体天线的散射特性, 分析了等离子体天线处于工作状态时等离子体参数(密度、碰撞频率)及天线外部约束腔体对天线雷达散射截面(RCS)的影响. 数值结果表明, 等离子体天线的RCS会随等离子体密度的减小及碰撞频率的增大而减小. 而约束腔体只有在高频段时才会对等离子体天线的RCS值产生较大的影响. 因此, 在不影响天线性能的情况下, 可以根据信号频率调节等离子体参数、选取合适的腔体材料以达到增强等离子体天线隐身性能的目的.   相似文献   

5.
RCS分析中多次反射的计算及程序实现技术   总被引:2,自引:0,他引:2  
介绍目标RCS分析计算中多次散射的计算方法,计算多次散射时主要考虑面元-面元之间的相互作用,计算过程采用几何光学法(GO)、物理光学法(PO),在总后向RCS计算中还运用了等效电磁流法.同时,文中讨论计算多次散射的程序实现技术.最后,给出计算例子,考虑多次散射时总的后向RCS计算结果与前人发表的实验结果相吻合.   相似文献   

6.
为研究天巡一号微小卫星的电磁散射特性, 建立了具有隐身外形设计的微小卫星电磁计算模型。采用物理光学法(PO)对不同状态下的雷达散射截面(RCS)进行数值计算, 并与微波暗室的试验结果对比, 验证了PO的准确性。在此基础上, 着重分析了卫星RCS入射角、极化、频率、电尺寸响应特性和全姿态角空间RCS响应特性。参考天巡一号的隐身构型设计, 将天巡一号优化为对称的尖锥构型, 通过不断增加尖锥棱边数来优化构型, 得到具有更低RCS构型的橄榄体卫星。结果表明:天巡一号的隐身姿态可有效应对单站雷达威胁, 最佳隐身姿态下的空间RCS均值低于非隐身姿态4.89 dBsm;在S波段(3 GHz)下, 橄榄体卫星RCS算术均值和RCS幅值分别低于天巡一号4.77 dBsm和31.66 dBsm;在X波段(10 GHz)下, 橄榄体卫星RCS算术均值和RCS幅值分别低于天巡一号3.65 dBsm和43.97 dBsm。   相似文献   

7.
双立尾对战斗机隐身特性的数值模拟   总被引:3,自引:2,他引:3  
为了降低战斗机的雷达散射截面(RCS,Radar Cross Section)特性,研究了双立尾外倾对战斗机RCS特性的影响.对战斗机的三维数字样机进行网格划分,基于物理光学法数值模拟出双立尾向两侧对等偏转对三翼面战斗机的头向、侧向和尾向的RCS特性的影响,并对战斗机的缩比实体样机进行电磁测试,证明了方法的可行性和数值模拟的准确性.数值模拟结果表明,当双立尾从0°向外偏转10°时,三翼面战斗机侧向RCS值缩减至原来的 9.8%,而头向和尾向的RCS值变化幅度较小.   相似文献   

8.
一种星图识别的星体图像高精度内插算法   总被引:9,自引:3,他引:9  
介绍了一种从星敏感器成像中高精度提取恒星位置和星等的方法.这种方法把星光成像看成是高斯点扩散函数模型,利用线性内插和最小二乘法方法,拟合得到高斯曲面参数.从高斯曲面模型中得到亚像素级的恒星位置和恒星星等.理论研究表明,曲面拟合法提取的星体位置精度高于传统的质心法.由于直接进行高斯曲面拟合计算非常复杂,为了简化计算,利用了星体成像点附近x,y方向的非线性插值方法,分别得到不同的曲面系数.仿真结果显示,在信噪比小于0.05时,定位精度小于1/20像素,星等误差小于5%.  相似文献   

9.
    
为了降低临近空间飞艇的雷达散射截面(RCS)特性,研究了X型尾翼变形角的不同对临近空间飞艇RCS特性的影响.采用物理光学法仿真出X型尾翼不同变形角对临近空间飞艇头向、侧向和尾向RCS特性的影响,并分别采用物理光学法和多层快速多极子法(MLFMM)计算对比球的RCS.对比说明了物理光学法是准确合适的.仿真结果表明,X型尾翼变形角的不同对飞艇头向RCS影响较小,对侧向的RCS影响较大.变形角从0°增加到20°时,侧向RCS减小到0°时的13.7%.X型尾翼的变形可以显著改善临近空间飞艇侧向隐身性能,同时增大了其他方向的RCS.  相似文献   

10.
物质热力函数(摩尔定压热容、熵、焓)是用于火箭发动机热力特性分析的常用函数.根据热力学关系,上述3种热力函数可表示为以温度为自变量,且含相同7个温度系数的多项式.由于精确分析物质热力特性的需要,需要各温度下更新更精确的数据值.将热力函数按温度高低分为不同区间,在保证各温度连接点函数值相等的情况下,采用最小二乘法的数学方法,通过编程计算,重新确定了135种火箭发动机常用物质的温度系数,得到300~ 5 000 K 内这些物质的函数计算值.进一步,对氮原子、液体铅、固体硅等相对误差较大的26种物质的摩尔定压热容利用最小二乘法再次进行了修正,使其精确度平均提高了100倍.所得到的热力函数计算值与标准值比较,误差小,精度高,使用方便,具有广泛的应用价值.   相似文献   

11.
用时域有限差分法计算目标的雷达散射截面时,一般用连接边界来引入平面入射波.理想情况下,当总场区没有散射目标时,该区域仅有入射波,散射场区电磁波为0.但在实际计算过程中,散射场区的电磁波一般不会严格等于0,这是因为在连接边界引入入射波时产生了电磁泄漏.一维情形下,用散射场区电场的平方和来衡量电磁泄漏程度.二维情形下,用等效原理将散射场区的电磁场进行远场外推,得到雷达散射截面,以此衡量电磁泄漏的大小.研究表明:时间步长、入射角度都能影响电磁泄漏大小.为使电磁泄漏较小,时间步长应接近于稳定性要求的最小步长,入射方向应避免垂直于计算区域边界.  相似文献   

12.
用物理光学法计算理想导体雷达散射截面过程中,需要基于无限大切平面假设计算表面电流密度.只有对表面比较光滑的电大尺寸目标,该假设才近似满足,而在一般情况下由该方法求得的表面电流密度存在误差.将二维导体圆柱、方柱以及三角柱等构型在不同入射频率、极化下的物理光学表面电流密度与精确解或矩量法结果进行了对比.分析表明:横磁波照射时物理光学法除在顶点处有较大误差外,基本能够正确反映出表面电流密度分布情况.横电波情形下物理光学法难以如实反映照射面和阴影面电流的谐振变化,与入射方向平行的面上表面电流密度也有较大误差.  相似文献   

13.
稳定因子对FDTD数值计算的影响   总被引:2,自引:0,他引:2  
讨论了FDTD(Finite-Difference Time-Domain)迭代计算中稳定因子的作用.推导了含有稳定因子的二阶Mur条件修正式,并以线源为例研究了稳定因子对吸收边界性能以及数值稳定性的影响.在三维计算空间中以软激励源形式加入平面波,计算了稳定因子不同时散射场区的RCS以及收敛性能的变化,结果表明在满足数值稳定条件的前提下,增加时间步长对计算更为有利.   相似文献   

14.
为了提高短距离定位精度,消除采用平行入射假定所引入的计算误差,分析和研究了近似误差对角度估计和解相位模糊的影响;得出了满足平行入射近似的前提条件,为干涉仪的波长、基线长度等参数设计提供了指导依据;提出了实际入射角的相位差估计和相应的角度计算方法,提高了角度估计精度。文章提出的高精度相位干涉仪测角方法,适用于多个运动平台(如卫星、飞行器)的互相定位、航天器交会对接、地面短距离目标定位等测角精度要求高的工程应用。  相似文献   

15.
对具有二维周期性结构特点的大尺寸金属渐变体,首先采用矩量法计算渐变体单元的散射场,然后利用天线阵列技术求解整个渐变体的雷达散射截面RCS (Radar Cross Section),既保证一定的计算精度,又解决计算量大以及单元间耦合的难题.推导了相关的数学公式,在线极化平面波入射情况下,分别给出了单个和多个金属渐变角锥电磁散射截面的计算例子,计算结果与商用软件HFSS (High Frequency Structure Simulator)计算得到的结果相吻合,计算用时大大少于HFSS的计算时间,表明介绍的方法在工程运用上是可行的.   相似文献   

16.
基于MLFMA的飞行器锯齿边板散射特性分析   总被引:8,自引:0,他引:8  
为精确求解散射问题,采用混合场积分方程、多层快速多极子算法(MLFMA, Multilevel Fast Multipole Algorithm)和共轭梯度算法的迭代技术,并改进了多极子模式数.金属球双站雷达散射截面(RCS,Radar Cross Section)的算例表明,该方法在保证精度的前提下,降低了内存和计算时间;分析了锯齿边板的电磁散射特性,总结了锯齿边板相对于直边板在不同角域内的RCS减缩特性以及RCS减缩与入射频率变化之间的关系:随着入射频率的增高,RCS减缩效果迅速提高,且垂直极化减缩效果较水平极化减缩效果好.该结论可以用来提高飞行器的隐身性能.   相似文献   

17.
张恒  张伟  陈晓 《深空探测学报》2017,4(4):373-378
深空测角测速组合导航系统通过测角信息与测速信息融合,获取探测器位置、速度等参数,具有连续、自主、实时、高精度的优点。在深空测角测速组合导航系统多源信息融合过程中,要求各敏感器数据必须是统一时间基准。基于天文测角测速组合导航系统基本原理,阐述了在实际系统中,测角敏感器、测速敏感器由于时间基准误差、采样周期不一致、数据传输时延等都会造成时间不同步,而时间误差对位置和速度测量信息会带来很大的影响。本文分析时间误差在深空测角测速组合导航系统位置估计和速度估计中的作用机理,研究基于内插外推方法的时间配准方法,实现了测角敏感器与测速敏感器量测信息的同步。数学仿真结果表明,内插外推时间配准算法可有效抑制时间误差,提高深空测角测速组合导航系统导航精度。  相似文献   

18.
年丰  王伟 《宇航计测技术》2007,27(5):1-5,21
对风云系列气象卫星微波成像仪、微波温度计热真空实验黑体定标源的电磁特性进行了仿真优化设计研究,优化目标为后向RCS最小以实现黑体法向发射率接近1。基于可跨越介质边界的亚网格时域有限差分法分别对方锥和圆锥金属基体在非涂覆和涂覆吸波材料为0.5~3.0 mm厚度,频率为10.65 GHz的情况进行了对比分析,圆锥的最佳涂覆厚度为1.5 mm,其后向RCS值明显优于方锥的最佳涂覆厚度2.5 mm达7.5 dBsm.在10.65 GHz频段内采用圆锥结构设计的黑体定标源可实现更高的发射率,同时由于最佳涂覆厚度比较薄,可以有效降低劈尖结构产生的温度梯度,实现定标源的温度均匀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号